×

Cluster tilting for higher Auslander algebras. (English) Zbl 1233.16014

Let \(\Lambda\) be a finite dimensional algebra. Then, by O. Iyama [Adv. Math. 210, No. 1, 22-50 (2007; Zbl 1115.16005)], the category of finite dimensional modules over \(\Lambda\) admits an \(n\)-Auslander-Reiten translate, \(\tau_n\) (and dual translate \(\tau^-_n\)). Let \(\mathcal M\) denote \(\tau_n\)-closure of \(D\Lambda\), where \(D=\operatorname{Hom}_k(-,k)\), and set \(\mathcal P(\mathcal M)\) to be the subcategory of objects in \(\mathcal M\) with projective dimension less than \(n\). Let \(\mathcal M_{\mathcal P}\) be the subcatgory of \(\mathcal M\) consisting of objects with no non-zero summands in \(\mathcal P(\mathcal M)\). Then \(\Lambda\) is said to be ‘\(n\)-complete’ if its global dimension is at most \(n\), there exists a tilting \(\Lambda\)-module \(T\) such that \(\mathcal P(\mathcal M)=\text{add\,}T\), \(\mathcal M\) is an \(n\)-cluster tilting subcategory of \(T^\perp\) (the subcategory of mod-\(\Lambda\) consisting of objects \(X\) such that \(\text{Ext}^i(T,X)=0\) for \(i>0\)), and \(\text{Ext}^i(\mathcal M_{\mathcal P},\Lambda)=0\) for \(0<i<n\).
Then it is shown that \(\Lambda\) is necessarily \(\tau_n\)-finite, i.e. global dimension at most \(n\) and \(\tau_n^l\) vanishing on \(D\Lambda\) for some \(l\). Let \(M\) be an additive generator for \(\mathcal M\). Then the ‘cone’ of \(\Lambda\) is the endomorphism algebra of \(M\). The main result of the paper is to show that, if \(\Lambda\) is \(n\)-complete, its cone is \((n+1)\)-complete.
This is a very interesting paper for several reasons. For example, the theory developed, including the above result, is a natural generalisation of some of the theory of Auslander algebras. It gives a nice way to construct \(n\)-cluster-tilting subcategories, inductively (by repeatedly applying the above result). There are close connections with the theory of Cohen-Macaulay modules over a singularity and some interesting higher dimensional Auslander-Reiten quivers appear.

MSC:

16G10 Representations of associative Artinian rings
13F60 Cluster algebras
16G20 Representations of quivers and partially ordered sets
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16G50 Cohen-Macaulay modules in associative algebras
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
16E10 Homological dimension in associative algebras

Citations:

Zbl 1115.16005

References:

[1] C. Amiot, Sur les petites catégories triangulés, PhD thesis.; C. Amiot, Sur les petites catégories triangulés, PhD thesis.
[2] Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble), 59, 6, 2525-2590 (2009) · Zbl 1239.16011
[3] Assem, I.; Brustle, T.; Schiffler, R.; Todorov, G., \(m\)-Cluster categories and \(m\)-replicated algebras, J. Pure Appl. Algebra, 212, 4, 884-901 (2008) · Zbl 1143.16015
[4] Assem, I.; Simson, D.; Skowroński, A., Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65 (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1092.16001
[5] M. Auslander, Representation dimension of Artin algebras, Lecture notes, Queen Mary College, London, 1971.; M. Auslander, Representation dimension of Artin algebras, Lecture notes, Queen Mary College, London, 1971. · Zbl 0331.16026
[6] Auslander, M., Functors and morphisms determined by objects, (Representation Theory of Algebras, Proc. Conf.. Representation Theory of Algebras, Proc. Conf., Temple Univ., Philadelphia, PA, 1976. Representation Theory of Algebras, Proc. Conf.. Representation Theory of Algebras, Proc. Conf., Temple Univ., Philadelphia, PA, 1976, Lect. Notes Pure Appl. Math., vol. 37 (1978), Dekker: Dekker New York), 1-244 · Zbl 0383.16015
[7] Auslander, M., Rational singularities and almost split sequences, Trans. Amer. Math. Soc., 293, 2, 511-531 (1986) · Zbl 0594.20030
[8] Auslander, M.; Bridger, M., Stable module theory, Mem. Amer. Math. Soc., 94 (1969) · Zbl 0204.36402
[9] Auslander, M.; Buchweitz, R.-O., The homological theory of maximal Cohen-Macaulay approximations, Colloque en l’honneur de Pierre Samuel. Colloque en l’honneur de Pierre Samuel, Orsay, 1987. Colloque en l’honneur de Pierre Samuel. Colloque en l’honneur de Pierre Samuel, Orsay, 1987, Mem. Soc. Math. Fr. (N.S.), 38, 5-37 (1989) · Zbl 0697.13005
[10] Auslander, M.; Reiten, I., Stable equivalence of dualizing \(R\)-varieties, Adv. Math., 12, 306-366 (1974) · Zbl 0285.16027
[11] Auslander, M.; Reiten, I., Almost split sequences for rational double points, Trans. Amer. Math. Soc., 302, 1, 87-97 (1987) · Zbl 0617.13018
[12] Auslander, M.; Reiten, I., Applications of contravariantly finite subcategories, Adv. Math., 86, 1, 111-152 (1991) · Zbl 0774.16006
[13] Auslander, M.; Reiten, I.; Smalo, S. O., Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36 (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0834.16001
[14] Auslander, M.; Smalo, S. O., Almost split sequences in subcategories, J. Algebra, 69, 2, 426-454 (1981) · Zbl 0457.16017
[15] Auslander, M.; Solberg, O., Gorenstein algebras and algebras with dominant dimension at least 2, Comm. Algebra, 21, 11, 3897-3934 (1993) · Zbl 0797.16011
[16] Barot, M.; Fernandez, E.; Platzeck, M.; Pratti, N.; Trepode, S., From iterated tilted algebras to cluster-tilted algebras, Adv. Math., 223, 4, 1468-1494 (2010) · Zbl 1204.16007
[17] Baur, K.; Marsh, R., A geometric description of \(m\)-cluster categories, Trans. Amer. Math. Soc., 360, 11, 5789-5803 (2008) · Zbl 1178.16010
[18] Bautista, R.; Gabriel, P.; Roĭter, A. V.; Salmeron, L., Representation-finite algebras and multiplicative bases, Invent. Math., 81, 2, 217-285 (1985) · Zbl 0575.16012
[19] Bondal, A. I.; Kapranov, M. M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat.. Izv. Akad. Nauk SSSR Ser. Mat., Math. USSR-Izv., 35, 3, 519-541 (1990), 1337, translation in: · Zbl 0703.14011
[20] Bongartz, K.; Gabriel, P., Covering spaces in representation-theory, Invent. Math., 65, 3, 331-378 (1981/1982) · Zbl 0482.16026
[21] Buan, A.; Iyama, O.; Reiten, I.; Scott, J., Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math., 145, 4, 1035-1079 (2009) · Zbl 1181.18006
[22] Buan, A.; Iyama, O.; Reiten, I.; Smith, D., Mutation of cluster-tilting objects and potentials, Amer. J. Math., in press · Zbl 1285.16012
[23] Buan, A.; Marsh, R., Cluster-tilting theory, (Trends in Representation Theory of Algebras and Related Topics. Trends in Representation Theory of Algebras and Related Topics, Contemp. Math., vol. 406 (2006), American Mathematical Society: American Mathematical Society Providence, RI), 1-30 · Zbl 1111.16014
[24] Buan, A.; Marsh, R.; Reiten, I.; Reineke, M.; Todorov, G., Tilting theory and cluster combinatorics, Adv. Math., 204, 2, 572-618 (2006) · Zbl 1127.16011
[25] Buan, A.; Thomas, H., Coloured quiver mutation for higher cluster categories, Adv. Math., 222, 3, 971-995 (2009) · Zbl 1182.16010
[26] Burban, I.; Iyama, O.; Keller, B.; Reiten, I., Cluster tilting for one-dimensional hypersurface singularities, Adv. Math., 217, 6, 2443-2484 (2008) · Zbl 1143.13014
[27] Erdmann, K.; Holm, T., Maximal \(n\)-orthogonal modules for selfinjective algebras, Proc. Amer. Math. Soc., 136, 9, 3069-3078 (2008) · Zbl 1153.16010
[28] Fomin, S.; Zelevinsky, A., Cluster algebras I: Foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) · Zbl 1021.16017
[29] Gabriel, P., The universal cover of a representation-finite algebra, (Representations of Algebras. Representations of Algebras, Puebla, 1980. Representations of Algebras. Representations of Algebras, Puebla, 1980, Lecture Notes in Math., vol. 903 (1981), Springer: Springer Berlin/New York), 68-105 · Zbl 0481.16008
[30] Geiss, C.; Keller, B.; Oppermann, S., \(n\)-Angulated categories · Zbl 1271.18013
[31] Geiss, C.; Leclerc, B.; Schröer, J., Rigid modules over preprojective algebras, Invent. Math., 165, 3, 589-632 (2006) · Zbl 1167.16009
[32] Geiss, C.; Leclerc, B.; Schröer, J., Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble), 58, 3, 825-876 (2008) · Zbl 1151.16009
[33] Geiss, C.; Leclerc, B.; Schröer, J., Cluster algebra structures and semicanoncal bases for unipotent groups · Zbl 1318.13038
[34] Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119 (1988), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0635.16017
[35] Herschend, M.; Iyama, O., \(n\)-Representation-finite algebras and twisted fractionally Calabi-Yau algebras, Bull. Lond. Math. Soc., in press · Zbl 1275.16012
[36] Huang, Z.; Iyama, O., Auslander-type conditions and cotorsion pairs, J. Algebra, 318, 1, 93-110 (2007) · Zbl 1183.16012
[37] Huang, Z.; Zhang, X., The existence of maximal \(n\)-orthogonal subcategories, J. Algebra, 321, 10, 2829-2842 (2009) · Zbl 1185.16014
[38] Huang, Z.; Zhang, X., Higher Auslander algebras admitting trivial maximal orthogonal subcategories · Zbl 1248.16012
[39] Huang, Z.; Zhang, X., Trivial maximal 1-orthogonal subcategories for Auslander’s 1-Gorenstein algebras · Zbl 1281.16021
[40] Igusa, K.; Todorov, G., Radical layers of representable functors, J. Algebra, 89, 1, 105-147 (1984) · Zbl 0538.16027
[41] Igusa, K.; Todorov, G., A characterization of finite Auslander-Reiten quivers, J. Algebra, 89, 1, 148-177 (1984) · Zbl 0538.16026
[42] Iyama, O., Symmetry and duality on \(n\)-Gorenstein rings, J. Algebra, 269, 2, 528-535 (2003) · Zbl 1034.16017
[43] Iyama, O., \(τ\)-Categories III: Auslander orders and Auslander-Reiten quivers, Algebr. Represent. Theory, 8, 5, 601-619 (2005) · Zbl 1091.16012
[44] Iyama, O., The relationship between homological properties and representation theoretic realization of Artin algebras, Trans. Amer. Math. Soc., 357, 2, 709-734 (2005) · Zbl 1058.16012
[45] Iyama, O., Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math., 210, 1, 22-50 (2007) · Zbl 1115.16005
[46] Iyama, O., Auslander correspondence, Adv. Math., 210, 1, 51-82 (2007) · Zbl 1115.16006
[47] Iyama, O., Auslander-Reiten theory revisited, (Trends in Representation Theory of Algebras and Related Topics. Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep. (2008), Eur. Math. Soc.: Eur. Math. Soc. Zurich), 349-397 · Zbl 1206.16011
[48] Iyama, O.; Oppermann, S., \(n\)-Representation-finite algebras and \(n\)-APR tilting, Trans. Amer. Math. Soc., in press · Zbl 1264.16015
[49] Iyama, O.; Oppermann, S., Stable categories of higher preprojective algebras · Zbl 1338.16018
[50] Iyama, O.; Reiten, I., Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Amer. J. Math., 130, 4, 1087-1149 (2008) · Zbl 1162.16007
[51] Iyama, O.; Yoshino, Y., Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172, 1, 117-168 (2008) · Zbl 1140.18007
[52] Jorgensen, P.; Holm, T., Cluster categories, selfinjective algebras, and stable Calabi-Yau dimensions: type A
[53] Jorgensen, P.; Holm, T., Cluster categories, selfinjective algebras, and stable Calabi-Yau dimensions: types D and E
[54] Keller, B., Cluster algebras, quiver representations and triangulated categories · Zbl 1215.16012
[55] Keller, B.; Reiten, I., Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math., 211, 123-151 (2007) · Zbl 1128.18007
[56] Keller, B.; Reiten, I., Acyclic Calabi-Yau categories. With an appendix by Michel Van den Bergh, Compos. Math., 144, 5, 1332-1348 (2008) · Zbl 1171.18008
[57] Keller, B.; Murfet, D.; Van den Bergh, M., On two examples by Iyama and Yoshino · Zbl 1264.13016
[58] Koenig, S.; Zhu, B., From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z., 258, 1, 143-160 (2008) · Zbl 1133.18005
[59] Lada, M., Relative homology and maximal \(l\)-orthogonal modules, J. Algebra, 321, 10, 2798-2811 (2009) · Zbl 1185.16010
[60] Miyashita, Y., Tilting modules of finite projective dimension, Math. Z., 193, 1, 113-146 (1986) · Zbl 0578.16015
[61] Oppermann, S.; Thomas, H., Higher-dimensional cluster combinatorics and representation theory · Zbl 1254.05197
[62] I. Reiten, Tilting theory and cluster algebras, preprint.; I. Reiten, Tilting theory and cluster algebras, preprint. · Zbl 0906.16002
[63] Reiten, I.; Van den Bergh, M., Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc., 80 (1989) · Zbl 0677.16002
[64] Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55, 2, 199-224 (1980) · Zbl 0444.16018
[65] Ringel, C. M., Appendix: Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future, (Handbook of Tilting Theory. Handbook of Tilting Theory, London Math. Soc. Lecture Note Ser., vol. 332 (2007), Cambridge University Press: Cambridge University Press Cambridge), 413-472 · Zbl 1106.16300
[66] Thomas, H., Defining an \(m\)-cluster category, J. Algebra, 318, 1, 37-46 (2007) · Zbl 1155.16016
[67] Van den Bergh, M., Three-dimensional flops and noncommutative rings, Duke Math. J., 122, 3, 423-455 (2004) · Zbl 1074.14013
[68] Van den Bergh, M., Non-commutative crepant resolutions, (The Legacy of Niels Henrik Abel (2004), Springer: Springer Berlin), 749-770 · Zbl 1082.14005
[69] Wrålsen, A., Rigid objects in higher cluster categories, J. Algebra, 321, 2, 532-547 (2009) · Zbl 1177.18008
[70] Zhu, B., Generalized cluster complexes via quiver representations, J. Algebraic Combin., 27, 1, 35-54 (2008) · Zbl 1145.16006
[71] Zhou, Y.; Zhu, B., Cluster combinatorics of \(d\)-cluster categories, J. Algebra, 321, 10, 2898-2915 (2009) · Zbl 1196.16013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.