×

Rigid objects in higher cluster categories. (English) Zbl 1177.18008

This is a study about the maximal \(m\)-rigid objects and \(m\)-cluster tilting objects in the \(m\)-cluster category \(\mathcal{C}_H^m\) of a finite-dimensional hereditary algebra \(H\) with \(n\) nonisomorphic simple modules. The results of this paper are, first, any maximal \(m\)-rigid object in \(\mathcal{C}_H^m\) has \(n\) indecomposable summands, where \(n\) is the number of nonisomorphic simple modules in \(mod H.\) Second, any \(m\)-rigid object having \(n-1\) indecomposable nonisomorphic summands has \(m+1\) indecomposable complements. The author also shows that all maximal \(m\)-rigid objects in \(\mathcal{C}_H^m\) coincide with \(m\)-cluster tilting objects; and if \(\Gamma = \text{End}_{\mathcal{C}_H}(T)^{\text{op}}\) where \(T\) is a maximal rigid object in \(\mathcal{C}_H,\) i.e., \(\Gamma\) is a cluster-tilted algebra, then so is \(\Gamma/e \Gamma,\) where \(e\) is an idempotent associated with a vertex of \(\Gamma.\) The main idea of this paper is to use the techniques by Buan, Marsh and Reiten and generalized version of these to prove most of the main results by induction.

MSC:

18E30 Derived categories, triangulated categories (MSC2010)
16G20 Representations of quivers and partially ordered sets

References:

[1] Assem, I.; Brüstle, T.; Schiffler, R.; Todorov, G., \(m\)-Cluster categories and \(m\)-replicated algebras, J. Pure Appl. Algebra, 212, 884-901 (2008) · Zbl 1143.16015
[2] Auslander, M.; Platzeck, M. I.; Reiten, I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 250, 1-46 (1979) · Zbl 0421.16016
[3] Bongartz, K., Tilted algebras, (Representations of Algebras. Representations of Algebras, Puebla 1980. Representations of Algebras. Representations of Algebras, Puebla 1980, Lecture Notes in Math., vol. 903 (1981), Springer-Verlag: Springer-Verlag Berlin), 26-38 · Zbl 0478.16025
[4] Baur, K.; Marsh, R. J., A geometric description of the \(m\)-cluster categories of type \(D_n\), Int. Math. Res. Not., 2007 (2007) · Zbl 1132.16018
[5] Baur, K.; Marsh, R. J., A geometric description of \(m\)-cluster categories, Trans. Amer. Math. Soc., 360, 5789-5803 (2008) · Zbl 1178.16010
[6] Buan, A. B.; Marsh, R. J.; Reiten, I., Cluster-tilted algebras, Trans. Amer. Math. Soc., 359, 1, 323-332 (2007) · Zbl 1123.16009
[7] Buan, A. B.; Marsh, R. J.; Reiten, I., Cluster mutation via quiver representations, Comment. Math. Helv., 83, 1, 143-177 (2008) · Zbl 1193.16016
[8] Buan, A. B.; Marsh, R. J.; Reineke, M.; Reiten, I.; Todorov, G., Tilting theory and cluster combinatorics, Adv. Math., 204, 2, 572-618 (2006) · Zbl 1127.16011
[9] Happel, D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras (1988), Cambridge Univ. Press · Zbl 0635.16017
[10] Holm, T.; Jørgensen, P., Cluster categories and selfinjective algebras: Type A
[11] Holm, T.; Jørgensen, P., Cluster categories and selfinjective algebras: Type D
[12] Happel, D.; Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc., 274, 2 (1982) · Zbl 0503.16024
[13] Iyama, O., Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math., 210, 1, 22-50 (2007) · Zbl 1115.16005
[14] Iyama, O.; Yoshino, Y., Mutations in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 217, 4, 117-168 (2008) · Zbl 1140.18007
[15] Keller, B., Triangulated orbit categories, Doc. Math., 10, 551-581 (2005) · Zbl 1086.18006
[16] Keller, B.; Reiten, I., Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math., 211, 123-151 (2007) · Zbl 1128.18007
[17] Keller, B.; Reiten, I., Acyclic Calabi-Yau categories, with an appendix by Michel Van den Bergh, Compos. Math., 144, 1332-1348 (2008) · Zbl 1171.18008
[18] Thomas, H., Defining an \(m\)-cluster category, J. Algebra, 318, 37-46 (2007) · Zbl 1155.16016
[19] Verdier, J. L., Catégories dérivées, état 0, (SGA \(4 \frac{1}{2} \). SGA \(4 \frac{1}{2} \), Lecture Notes in Math., vol. 569 (1977), Springer-Verlag: Springer-Verlag Berlin), 262-311 · Zbl 0407.18008
[20] Verdier, J. L., Des catégories dérivées des catégories abéliennes, Astérisque, 239 (1996), xii+253 pp · Zbl 0882.18010
[21] Zhou, Y.; Zhu, B., Cluster combinatorics of \(d\)-cluster categories · Zbl 1196.16013
[22] Zhu, B., Generalized cluster complexes via quiver representations, J. Algebraic Combin., 27, 25-54 (2008) · Zbl 1145.16006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.