×

A generalization of Clausen’s identity. (English) Zbl 1232.33003

Summary: The paper gives an extension of Clausen’s identity to the square of any Gauss hypergeometric function. Accordingly, solutions of the related third-order linear differential equation are found in terms of certain bivariate series that can reduce to \(_{3}\)F\(_{2}\) series similar to those in Clausen’s identity. The general contiguous variation of Clausen’s identity is found as well. The related Chaundy’s identity is generalized without any restriction on the parameters of the Gauss hypergeometric function. The special case of dihedral Gauss hypergeometric functions is underscored.

MSC:

33C05 Classical hypergeometric functions, \({}_2F_1\)
33C65 Appell, Horn and Lauricella functions
32A10 Holomorphic functions of several complex variables

References:

[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge Univ. Press, Cambridge (1999) · Zbl 0920.33001
[2] Bailey, W.N.: A reducible case of the fourth type of Appell’s hypergeometric functions of two variables. Q. J. Math. 4, 305–308 (1933) · Zbl 0008.11402 · doi:10.1093/qmath/os-4.1.305
[3] Chaundy, W.: On Clausen’s hypergeometric identity. Q. J. Math. 9, 265–274 (1958) · Zbl 0088.27802 · doi:10.1093/qmath/9.1.265
[4] Clausen, T.: Ueber die Fälle, wenn die Reihe von der Form $y=1+\(\backslash\)frac{\(\backslash\)alpha}{1}\(\backslash\)cdot\(\backslash\)frac{\(\backslash\)beta}{\(\backslash\)gamma}x +\(\backslash\)frac{\(\backslash\)alpha\(\backslash\)cdot\(\backslash\)alpha+1}{1\(\backslash\)cdot2}\(\backslash\)cdot \(\backslash\)frac{\(\backslash\)beta\(\backslash\)cdot\(\backslash\)beta+1}{\(\backslash\)gamma\(\backslash\)cdot\(\backslash\)gamma+1}x\^{2}+\(\backslash\)mbox{etc.}$ ein quadrat von der Form $z=1+\(\backslash\)frac{\(\backslash\)alpha’}{1}\(\backslash\)cdot\(\backslash\)frac{\(\backslash\)beta’}{\(\backslash\)gamma’}\(\backslash\)cdot \(\backslash\)frac{\(\backslash\)delta’}{\(\backslash\)epsilon’}x+\(\backslash\)frac{\(\backslash\)alpha’\(\backslash\)cdot\(\backslash\)alpha’+1}{1\(\backslash\)cdot2}\(\backslash\)cdot\(\backslash\)frac{\(\backslash\)beta’\(\backslash\)cdot\(\backslash\)beta’+1}{\(\backslash\)gamma’\(\backslash\)cdot\(\backslash\)gamma’+1}\(\backslash\)cdot\(\backslash\)frac{\(\backslash\)delta’\(\backslash\)cdot\(\backslash\)delta’+1}{\(\backslash\)epsilon’\(\backslash\)cdot\(\backslash\)epsilon’+1}x\^{2}+\(\backslash\)mbox{etc.}$ hat. J. Reine Angew. Math. 3, 89–91 (1828) · ERAM 003.0098cj · doi:10.1515/crll.1828.3.89
[5] Lanfear, N., Suslov, S.: The time-dependent Schroedinger equation, Riccati equation and airy functions. Available at arXiv:0903.3608 (2009)
[6] Vidunas, R.: Specialization of Appell’s functions to univariate hypergeometric functions. J. Math. Anal. Appl. 355, 145–163 (2009). Available at arXiv:0804.0655 · Zbl 1169.33003 · doi:10.1016/j.jmaa.2009.01.047
[7] Vidunas, R.: On singular univariate specializations of bivariate hypergeometric functions. J. Math. Anal. Appl. 365, 135–141 (2010). Available at arXiv:0906.1861 · Zbl 1226.33006 · doi:10.1016/j.jmaa.2009.10.018
[8] Vidunas, R.: Transformations and invariants for dihedral Gauss hypergeometric functions. Kyushu J. Math. 66(1) (2012, in press). Available at arXiv:1101.3688 · Zbl 1259.33008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.