×

On singular univariate specializations of bivariate hypergeometric functions. (English) Zbl 1226.33006

Summary: It is tempting to evaluate \(F_2(x,1)\) and similar univariate specializations of Appell’s functions by evaluating the apparent power series at \(x=0\) straight away using the Gauss formula for \(_2F_1(1)\). But this kind of naive evaluation can lead to errors as the \(_2F_1(1)\) coefficients might eventually diverge; then the actual power series at \(x=0\) might involve branching terms. This paper demonstrates these complications by concrete examples.

MSC:

33C65 Appell, Horn and Lauricella functions
33C20 Generalized hypergeometric series, \({}_pF_q\)

References:

[1] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0920.33001
[2] Bailey, W. N., A reducible case of the fourth type of Appell’s hypergeometric functions of two variables, Q. J. Math. (Oxford), 4, 305-308 (1933) · Zbl 0008.11402
[3] Clausen, T., Ueber die Fälle, wenn die Reihe von der Form \(y = 1 + \frac{\alpha}{1} \cdot \frac{\beta}{\gamma} x + \frac{\alpha \cdot \alpha + 1}{1 \cdot 2} \cdot \frac{\beta \cdot \beta + 1}{\gamma \cdot \gamma + 1} x^2 + \text{etc.}\) ein Quadrat von der Form \(z = 1 + \frac{\alpha^\prime}{1} \cdot \frac{\beta^\prime}{\gamma^\prime} \cdot \frac{\delta^\prime}{\&z.epsi;^\prime} x + \frac{\alpha^\prime \cdot \alpha^\prime + 1}{1 \cdot 2} \cdot \frac{\beta^\prime \cdot \beta^\prime + 1}{\gamma^\prime \cdot \gamma^\prime + 1} \cdot \frac{\delta^\prime \cdot \delta^\prime + 1}{\&z.epsi;^\prime \cdot \&z.epsi;^\prime + 1} x^2 + \text{etc.}\) hat, J. Reine Angew. Math., 3, 89-91 (1828) · ERAM 003.0098cj
[5] Srivastava, H. M.; Karlsson, P. W., Multiple Gaussian Hypergeometric Series (1985), Ellis Horwood Ltd. · Zbl 0552.33001
[7] Vidūnas, R., Specialization of Appell’s functions to univariate hypergeometric functions, J. Math. Anal. Appl., 355, 145-163 (2009) · Zbl 1169.33003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.