×

Sortable elements in infinite Coxeter groups. (English) Zbl 1231.20036

The authors study sortable elements in a general Coxeter group \(W\). An element \(c\in W\) is called a ‘Coxeter element’ if it is of the form \(s_1s_2\cdots s_n\) for some ordering of the set \(S:=\{s_1,s_2,\dots,s_n\}\) of simple reflections. For any word \(z\) in the alphabet \(S\), the ‘support’ \(\text{supp}(z)\subseteq S\) of \(z\) is the set of letters occurring in \(z\). An element \(w\in W\) is called \(c\)-sortable if \(w\) has a reduced word which is the concatenation \(z_1z_2\cdots z_k\) of words \(z_i\) subject to the following conditions: (1) Each \(z_i\) is a subword of \(s_1\cdots s_n\). (2) The supports of the \(z_i\)’s satisfy \(\text{supp}(z_1)\supseteq\text{supp}(z_2)\supseteq\cdots\supseteq\text{supp}(z_k)\). This word is called a \(c\)-sorting word for \(w\).
The authors show that the element \(w\in W\) is \(c\)-sortable if and only if \(w\) has a reduced word whose associated sequence of reflections is compatible with the skew-symmetric form \(\omega_c\).
They characterize \(c\)-sortability of \(w\) directly in terms of inversions of \(w\).
They define the ‘\(c\)-Cambrian cone’ associated to \(v\) for each \(c\)-sortable element \(v\).
They give a recursive definition of the projection \(\pi_{\downarrow}^c\) and show that \(\pi_{\downarrow}^c\) is order preserving and that each fiber \((\pi_{\downarrow}^c)^{-1}(v)\) is the intersection of the Tits cone with \(\text{Cone}_c(v)\).
They show that the \(c\)-sortable elements are a sub-semilattice of the weak order, that the map \(\pi_{\downarrow}^c\) respects the meet operation and the join operation.
They show that the Cambrian cones \(\text{Cone}_c(v)\) are the maximal cones of a fan inside the Tits cone.
The last section contains pictorial examples illustrating many of the results.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
20F05 Generators, relations, and presentations of groups
05E15 Combinatorial aspects of groups and algebras (MSC2010)

References:

[1] Norbert A’Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976), no. 1, 61 – 67 (French). · Zbl 0406.20041 · doi:10.1007/BF01425505
[2] Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. Techniques of representation theory. · Zbl 1092.16001
[3] I. N. Bernšteĭn, I. M. Gel\(^{\prime}\)fand, and V. A. Ponomarev, Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19 – 33 (Russian). · Zbl 0269.08001
[4] David Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 647 – 683 (English, with English and French summaries). · Zbl 1064.20039 · doi:10.1016/j.ansens.2003.01.001
[5] Sara C. Billey and Tom Braden, Lower bounds for Kazhdan-Lusztig polynomials from patterns, Transform. Groups 8 (2003), no. 4, 321 – 332. · Zbl 1063.20044 · doi:10.1007/s00031-003-0629-x
[6] Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. · Zbl 1110.05001
[7] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4 – 6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. · Zbl 1120.17002
[8] Thomas Brady and Colum Watt, \?(\?,1)’s for Artin groups of finite type, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 225 – 250. · Zbl 1053.20034 · doi:10.1023/A:1020902610809
[9] Thomas Brady and Colum Watt, A partial order on the orthogonal group, Comm. Algebra 30 (2002), no. 8, 3749 – 3754. · Zbl 1018.20040 · doi:10.1081/AGB-120005817
[10] Nathalie Caspard, The lattice of permutations is bounded, Internat. J. Algebra Comput. 10 (2000), no. 4, 481 – 489. · Zbl 1008.06004 · doi:10.1142/S0218196700000182
[11] Nathalie Caspard, Claude Le Conte de Poly-Barbut, and Michel Morvan, Cayley lattices of finite Coxeter groups are bounded, Adv. in Appl. Math. 33 (2004), no. 1, 71 – 94. · Zbl 1097.06001 · doi:10.1016/j.aam.2003.09.002
[12] Vinay V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Arch. Math. (Basel) 53 (1989), no. 6, 543 – 546. · Zbl 0688.20028 · doi:10.1007/BF01199813
[13] Harm Derksen and Jerzy Weyman, Quiver representations, Notices Amer. Math. Soc. 52 (2005), no. 2, 200 – 206. · Zbl 1143.16300
[14] M. J. Dyer, Hecke algebras and shellings of Bruhat intervals, Compositio Math. 89 (1993), no. 1, 91 – 115. · Zbl 0817.20045
[15] Matthew Dyer, Reflection subgroups of Coxeter systems, J. Algebra 135 (1990), no. 1, 57 – 73. · Zbl 0712.20026 · doi:10.1016/0021-8693(90)90149-I
[16] Sergey Fomin and Andrei Zelevinsky, \?-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977 – 1018. · Zbl 1057.52003 · doi:10.4007/annals.2003.158.977
[17] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63 – 121. · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[18] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112 – 164. · Zbl 1127.16023 · doi:10.1112/S0010437X06002521
[19] Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, Mathematical Surveys and Monographs, vol. 42, American Mathematical Society, Providence, RI, 1995. · Zbl 0839.06005
[20] Robert B. Howlett, Coxeter groups and \?-matrices, Bull. London Math. Soc. 14 (1982), no. 2, 137 – 141. · Zbl 0465.20029 · doi:10.1112/blms/14.2.137
[21] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. · Zbl 0725.20028
[22] Přemysl Jedlička, A combinatorial construction of the weak order of a Coxeter group, Comm. Algebra 33 (2005), no. 5, 1447 – 1460. · Zbl 1079.20058 · doi:10.1081/AGB-200060517
[23] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[24] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), no. 1, 57 – 92. · Zbl 0427.17001 · doi:10.1007/BF01403155
[25] B. Keller, Cluster algebras, quiver representations and triangulated categories. · Zbl 1215.16012
[26] Y. Palu, Cluster characters for triangulated \( 2\)-Calabi-Yau categories. math/0703540 · Zbl 1154.16008
[27] Annette Pilkington, Convex geometries on root systems, Comm. Algebra 34 (2006), no. 9, 3183 – 3202. · Zbl 1103.52001 · doi:10.1080/00927870600778340
[28] Nathan Reading, Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Universalis 50 (2003), no. 2, 179 – 205. · Zbl 1092.06006 · doi:10.1007/s00012-003-1834-0
[29] Nathan Reading, Lattice congruences of the weak order, Order 21 (2004), no. 4, 315 – 344 (2005). · Zbl 1097.20036 · doi:10.1007/s11083-005-4803-8
[30] Nathan Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110 (2005), no. 2, 237 – 273. · Zbl 1133.20027 · doi:10.1016/j.jcta.2004.11.001
[31] Nathan Reading, Cambrian lattices, Adv. Math. 205 (2006), no. 2, 313 – 353. · Zbl 1106.20033 · doi:10.1016/j.aim.2005.07.010
[32] Nathan Reading, Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5931 – 5958. · Zbl 1189.05022
[33] Nathan Reading, Sortable elements and Cambrian lattices, Algebra Universalis 56 (2007), no. 3-4, 411 – 437. · Zbl 1184.20038 · doi:10.1007/s00012-007-2009-1
[34] Nathan Reading and David E. Speyer, Cambrian fans, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 2, 407 – 447. · Zbl 1213.20038 · doi:10.4171/JEMS/155
[35] David E. Speyer, Powers of Coxeter elements in infinite groups are reduced, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1295 – 1302. · Zbl 1187.20053
[36] S. Yang and A. Zelevinsky, Cluster algebras of finite type via Coxeter elements and principal minors, arXiv:0804.3303 Transformation Groups, to appear. · Zbl 1177.16010
[37] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.