×

Canonical quantization of spherically symmetric dust collapse. (English) Zbl 1230.83049

Summary: Quantum gravity effects are likely to play a crucial role in determining the outcome of gravitational collapse during its final stages. In this contribution we will outline a canonical quantization of the LeMaitre-Tolman-Bondi (LTB) models, which describe the collapse of spherical, inhomogeneous, non-rotating dust. Although there are many models of gravitational collapse, this particular class of models stands out for its simplicity and the fact that both black holes and naked singularity end states may be realized on the classical level, depending on the initial conditions. We will obtain the appropriate Wheeler-DeWitt equation and then solve it exactly, after regularization on a spatial lattice. The solutions describe Hawking radiation and provide an elegant microcanonical description of black hole entropy, but they raise other questions, most importantly concerning the nature of gravity’s fundamental degrees of freedom.

MSC:

83C45 Quantization of the gravitational field
83C47 Methods of quantum field theory in general relativity and gravitational theory
83C57 Black holes
80A10 Classical and relativistic thermodynamics
83C75 Space-time singularities, cosmic censorship, etc.
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81T17 Renormalization group methods applied to problems in quantum field theory
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] LeMaî tre, G.: Annales de la Societe Scientifique de Bruxelles A53, 51 (1933); for an English translation see Gen. Relativ. Gravit. 29, 641 (1997)
[2] Krasinski A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)
[3] Kuchař K.V.: Phys. Rev. D 50, 3961 (1994) · doi:10.1103/PhysRevD.50.3961
[4] Romano, J.D.: [arXiv:gr-qc/9501015]
[5] Joshi P., Singh T.P.: Phys. Rev. 51, 6778 (1995) · doi:10.1103/PhysRevA.51.3390.2
[6] Vaz C., Witten L., Singh T.P.: Phys. Rev. D 63, 104020 (2001) · doi:10.1103/PhysRevD.63.104020
[7] Kiefer C., M-Hill J., Vaz C.: Phys. Rev. D 73, 044025 (2006) · doi:10.1103/PhysRevD.73.044025
[8] Brown J.D., Kuchař K.V.: Phys. Rev. D 51, 5600 (1995) · doi:10.1103/PhysRevD.51.5600
[9] Kiefer C.: Quantum Gravity. Clarendon Press, Oxford (2004)
[10] Tsamis N.C., Woodard R.P.: Phys. Rev. D 36, 3641 (1987) · doi:10.1103/PhysRevD.36.3641
[11] Vaz C., Witten L., Singh T.P.: Phys. Rev. D 69, 104029 (2004) · doi:10.1103/PhysRevD.69.104029
[12] Hawking S.W.: Commun. Math. Phys. 43, 199 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[13] Vaz C., Kiefer C., Singh T.P., Witten L.: Phys. Rev. D 67, 024014 (2003) · doi:10.1103/PhysRevD.67.024014
[14] Kiefer C., Mueller-Hill J., Singh T.P., Vaz C.: Phys. Rev. D 75, 124010 (2007) · doi:10.1103/PhysRevD.75.124010
[15] Vaz C., Wijewardhana L.C.R.: Phys. Rev. D 82, 084018 (2010) · doi:10.1103/PhysRevD.82.084018
[16] Kiefer C.: Phys. Lett. B 225, 227 (1989) · doi:10.1016/0370-2693(89)90810-1
[17] Brotz T., Kiefer C.: Phys. Rev. D 55, 2186 (1997) · doi:10.1103/PhysRevD.55.2186
[18] Vaz C., Witten L.: Phys. Rev. D 64, 084005 (2001) · doi:10.1103/PhysRevD.64.084005
[19] Bekenstein J.: Phys. Rev. D 7, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[20] Kiefer C., Kolland G.: Gen. Relativ. Gravit. 40, 1327 (2008) · Zbl 1145.83019 · doi:10.1007/s10714-008-0609-5
[21] Vaz C., Tibrewala R., Singh T.P.: Phys. Rev. D 78, 024019 (2008) · doi:10.1103/PhysRevD.78.024019
[22] Franzen A., Gutti S., Kiefer C.: Class. Quantum Gravity 27, 015011 (2010) · Zbl 1184.83040 · doi:10.1088/0264-9381/27/1/015011
[23] Vaz C., Gutti S., Kiefer C., Singh T.P., Wijewardhana L.C.R.: Phys. Rev. D 77, 064021 (2008) · doi:10.1103/PhysRevD.77.064021
[24] Strominger A.: JHEP 9802, 009 (1998) · Zbl 0955.83010 · doi:10.1088/1126-6708/1998/02/009
[25] Gutti S.: Class. Quantum Gravity 22, 3223 (2005) · Zbl 1075.83531 · doi:10.1088/0264-9381/22/16/007
[26] Coussaert O., Henneaux M., van Driel P.: Class. Quantum Gravity 12, 2961 (1995) · Zbl 0836.53052 · doi:10.1088/0264-9381/12/12/012
[27] Vaz C., Wijewardhana L.C.R.: Phys. Rev. D 79, 084014 (2009) · doi:10.1103/PhysRevD.79.084014
[28] Hawking S.W., Page D.N.: Commun. Math. Phys. 87, 577 (1983) · doi:10.1007/BF01208266
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.