Skip to main content
Log in

Gibbs’ paradox and black-hole entropy

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In statistical mechanics Gibbs’ paradox is avoided if the particles of a gas are assumed to be indistinguishable. The resulting entropy then agrees with the empirically tested thermodynamic entropy up to a term proportional to the logarithm of the particle number. We discuss here how analogous situations arise in the statistical foundation of black-hole entropy. Depending on the underlying approach to quantum gravity, the fundamental objects to be counted have to be assumed indistinguishable or not in order to arrive at the Bekenstein–Hawking entropy. We also show that the logarithmic corrections to this entropy, including their signs, can be understood along the lines of standard statistical mechanics. We illustrate the general concepts within the area quantization model of Bekenstein and Mukhanov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking S.W. (1975). Commun. Math. Phys. 43: 199

    Article  ADS  MathSciNet  Google Scholar 

  2. Kiefer C. (2007). Quantum Gravity, 2nd edn. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  3. Page D.N. (2005). New J. Phys. 7: 203

    Article  ADS  MathSciNet  Google Scholar 

  4. Frolov V.P. and Novikov I.D. (1998). Black Hole Physics. Kluwer, Dordrecht

    MATH  Google Scholar 

  5. Carlip, S.: (2007) arXiv:0705.3024

  6. Bombelli L., Koul R.K., Lee J. and Sorkin R.D. (1986). Phys. Rev. D 34: 373

    Article  ADS  MathSciNet  Google Scholar 

  7. Srednicki M. (1993). Phys. Rev. Lett. 71: 666

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Das S. and Shankaranarayanan (2006). Phys. Rev. D 73: 121701(R)

    ADS  Google Scholar 

  9. Ferrari V. and Mashhoon B. (1984). Phys. Rev. D 30: 295

    Article  ADS  MathSciNet  Google Scholar 

  10. Kiefer C. (2004). Class. Quantum Grav. 21: L123

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Cramer M., Eisert J., Plenio M.B. and Dreißig J. (2006). Phys. Rev. A 73: 012309

    Article  ADS  Google Scholar 

  12. Zeh H.D. (2007). The Physical Basis of the Direction of Time, 5th edn. Springer, Berlin

    MATH  Google Scholar 

  13. Denbigh K.G. and Denbigh J.S. (1985). Entropy in Relation to Incomplete Knowledge. Cambridge University Press, Cambridge

    Google Scholar 

  14. Casper B.M. and Freier S. (1973). Am. J. Phys. 41: 509

    Article  ADS  Google Scholar 

  15. Stern O. (1949). Rev. Mod. Phys. 21: 534

    Article  ADS  Google Scholar 

  16. Rovelli C. (2004). Quantum Gravity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Bekenstein J.D. and Mukhanov V.F. (1995). Phys. Lett. B 360: 7

    Article  ADS  MathSciNet  Google Scholar 

  18. Vaz C. and Witten L. (2001). Phys. Rev. D 64: 084005

    Article  ADS  MathSciNet  Google Scholar 

  19. Wheeler J.A. (1990). Information, physics, quantum: the search for links. In: Zurek, W.H. (eds) Complexity, Entropy and the Physics of Information, pp. Addison-Wesley, Redwood City

    Google Scholar 

  20. Gour G. (2002). Phys. Rev. D 66: 104022

    Article  ADS  MathSciNet  Google Scholar 

  21. Domagala M. and Lewandowski J. (2004). Class. Quantum Grav. 21: 5233

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Meissner K.A. (2004). Class. Quantum Grav. 21: 5245

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Ghosh A. and Mitra P. (2005). Phys. Lett. B 616: 114

    Article  ADS  MathSciNet  Google Scholar 

  24. Mohaupt, T.: (2007) arXiv: hep-th/0703035

  25. Akbar M.M. and Das S. (2004). Class. Quantum Grav. 21: 1383

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Eckart A., Straubmeier C. and Schödel R. (2005). The Black Hole at the Center of the Milky Way. Imperial College Press, London

    Google Scholar 

  27. Zeh H.D. (2005). Phys. Lett. A 347: 1

    Article  ADS  MathSciNet  Google Scholar 

  28. Joos E., et al. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin

    Google Scholar 

  29. Kiefer C. (2001). Class. Quantum Grav. 18: L151

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Kiefer.

Additional information

Dedicated to the 60th birthday of Bahram Mashhoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiefer, C., Kolland, G. Gibbs’ paradox and black-hole entropy. Gen Relativ Gravit 40, 1327–1339 (2008). https://doi.org/10.1007/s10714-008-0609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0609-5

Keywords

Navigation