×

How quantum is the big bang? (English) Zbl 1228.83118

Summary: When quantum gravity is used to discuss the big bang singularity, the most important, though rarely addressed, question is what role genuine quantum degrees of freedom play. Here, complete effective equations are derived for isotropic models with an interacting scalar to all orders in the expansions involved. The resulting coupling terms show that quantum fluctuations do not affect the bounce much. Quantum correlations, however, do have an important role and could even eliminate the bounce. How quantum gravity regularizes the big bang depends crucially on properties of the quantum state.

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory

References:

[1] M. Bojowald, Living Rev. Relativity 8 pp 11– (2005) ISSN: http://id.crossref.org/issn/1433-8351 · Zbl 1255.83133 · doi:10.12942/lrr-2005-11
[2] DOI: 10.1103/PhysRevLett.86.5227 · doi:10.1103/PhysRevLett.86.5227
[3] DOI: 10.1063/1.2752483 · doi:10.1063/1.2752483
[4] DOI: 10.1103/PhysRevD.73.063508 · doi:10.1103/PhysRevD.73.063508
[5] DOI: 10.1103/PhysRevLett.96.141301 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[6] DOI: 10.1103/PhysRevD.73.124038 · doi:10.1103/PhysRevD.73.124038
[7] DOI: 10.1103/PhysRevD.75.081301 · doi:10.1103/PhysRevD.75.081301
[8] DOI: 10.1007/s10714-006-0348-4 · Zbl 1157.83353 · doi:10.1007/s10714-006-0348-4
[9] DOI: 10.1103/PhysRevD.76.064018 · doi:10.1103/PhysRevD.76.064018
[10] DOI: 10.1103/PhysRevD.75.123512 · doi:10.1103/PhysRevD.75.123512
[11] DOI: 10.1088/0264-9381/19/10/313 · Zbl 1008.83037 · doi:10.1088/0264-9381/19/10/313
[12] A. Ashtekar, Adv. Theor. Math. Phys. 7 pp 233– (2003) ISSN: http://id.crossref.org/issn/1095-0761
[13] C. Rovelli, in: Quantum Gravity (2004) · doi:10.1017/CBO9780511755804
[14] DOI: 10.1088/0264-9381/21/15/R01 · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[15] T. Thiemann, in: Introduction to Modern Canonical Quantum General Relativity (2007) · Zbl 1129.83004
[16] DOI: 10.1142/S0129055X06002772 · Zbl 1124.82010 · doi:10.1142/S0129055X06002772
[17] DOI: 10.1142/S0219887807001941 · Zbl 1168.83308 · doi:10.1142/S0219887807001941
[18] DOI: 10.1103/PhysRevD.76.063511 · doi:10.1103/PhysRevD.76.063511
[19] DOI: 10.1038/nphys654 · doi:10.1038/nphys654
[20] DOI: 10.1088/0264-9381/21/1/015 · Zbl 1061.83071 · doi:10.1088/0264-9381/21/1/015
[21] DOI: 10.1088/0264-9381/21/1/016 · Zbl 1061.83072 · doi:10.1088/0264-9381/21/1/016
[22] DOI: 10.1103/PhysRevD.71.123512 · doi:10.1103/PhysRevD.71.123512
[23] DOI: 10.1038/436920a · doi:10.1038/436920a
[24] DOI: 10.1088/0264-9381/24/24/007 · Zbl 1197.83054 · doi:10.1088/0264-9381/24/24/007
[25] DOI: 10.1088/0264-9381/23/15/016 · Zbl 1101.83035 · doi:10.1088/0264-9381/23/15/016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.