×

Loop quantum cosmology and inhomogeneities. (English) Zbl 1157.83353

Summary: Inhomogeneities are introduced in loop quantum cosmology using regular lattice states, with a kinematical arena similar to that in homogeneous models considered earlier. The framework is intended to encapsulate crucial features of background independent quantizations in a setting accessible to explicit calculations of perturbations on a cosmological background. It is used here only for qualitative insights but can be extended with further more detailed input. One can thus see how several parameters occuring in homogeneous models appear from an inhomogeneous point of view. Their physical roles in several cases then become much clearer, often making previously unnatural choices of values look more natural by providing alternative physical roles. This also illustrates general properties of symmetry reduction at the quantum level and the roles played by inhomogeneities. Moreover, the constructions suggest a picture for gravitons and other metric modes as collective excitations in a discrete theory, and lead to the possibility of quantum gravity corrections in large universes.

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field

References:

[1] Rovelli C. (2004). Quantum Gravity. Cambridge University Press, Cambridge · Zbl 1091.83001
[2] Ashtekar A., Lewandowski J. (2004). Background independent quantum gravity: A status report. Class. Quant. Grav. 21:R53–R152 [gr-qc/0404018] · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[3] Thiemann, T.: Introduction to modern canonical quantum general relativity, [gr-qc/0110034] · Zbl 1129.83004
[4] Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593–619 (1995) [gr-qc/9411005], Erratum: Nucl. Phys. B 456, 753 (1995). · Zbl 0925.83013
[5] Ashtekar A., Lewandowski J. (1997). Quantum theory of geometry I: area operators. Class. Quant. Grav. 14:A55–A82 [gr-qc/9602046] · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[6] Ashtekar A., Lewandowski J. (1997). Quantum theory of geometry II: volume operators. Adv. Theor. Math. Phys. 1:388–429 [gr-qc/9711031] · Zbl 0903.58067
[7] Bojowald M. (2001). Absence of a singularity in loop quantum cosmology. Phys. Rev. Lett. 86:5227–5230 [gr-qc/0102069] · doi:10.1103/PhysRevLett.86.5227
[8] Ashtekar A., Bojowald M. (2006). Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav. 23:391–411 [gr-qc/0509075] · Zbl 1090.83021 · doi:10.1088/0264-9381/23/2/008
[9] Bojowald, M.: Non-singular black holes and degrees of freedom in quantum gravity. Phys. Rev. Lett. 95, 061301 (2005) [gr-qc/0506128]
[10] Bojowald M., Kastrup H.A. (2000). Symmetry reduction for quantized diffeomorphism invariant theories of connections. Class. Quant. Grav. 17:3009–3043 [hep-th/9907042] · Zbl 0977.83019 · doi:10.1088/0264-9381/17/15/311
[11] Bojowald, M.: Loop quantum cosmology, Living Rev. Relat. 8, 11 (2005) [gr-qc/0601085], http://relativity.livingreviews.org/Articles/lrr-2005-11/ · Zbl 1255.83133
[12] Ashtekar A., Baez J.C., Corichi A., Krasnov K. (1998). Quantum geometry and black hole entropy. Phys. Rev. Lett. 80:904–907 [gr-qc/9710007] · Zbl 0949.83024 · doi:10.1103/PhysRevLett.80.904
[13] Ashtekar A., Baez J.C., Krasnov K. (2000). Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4:1–94 [gr-qc/0005126] · Zbl 0981.83028
[14] Rovelli, C.: Graviton propagator from background-independent quantum gravity, [gr-qc/0508124] · Zbl 1228.83050
[15] Ellis, G.: Relativistic cosmology: its nature, aims and problems In: General Relativity and Gravitation, Bertotti, B., et al., (ed.) pp. 215–288. Reidel, (1984)
[16] Bojowald M. (2006). Degenerate configurations, Singularities and the non-Abelian nature of loop quantum gravity. Class. Quant. Grav. 23:987–1008 [gr-qc/0508118] · Zbl 1087.83027 · doi:10.1088/0264-9381/23/3/023
[17] Eddington A.S. (1939). The Philosophy of Physical Science. The Macmillan company, Cambridge (translated back from the German edition) · JFM 65.1098.03
[18] Bojowald M. (2004). Spherically symmetric quantum geometry: states and basic operators. Class. Quant. Grav. 21:3733–3753 [gr-qc/0407017] · Zbl 1084.83013 · doi:10.1088/0264-9381/21/15/008
[19] Bojowald M., Swiderski R. (2004). The volume operator in spherically symmetric quantum geometry. Class. Quant. Grav. 21:4881–4900 [gr-qc/0407018] · Zbl 1060.83050 · doi:10.1088/0264-9381/21/21/009
[20] Bojowald M., Swiderski R. (2006). Spherically symmetric quantum geometry: Hamiltonian constraint. Class. Quant. Grav. 23:2129–2154 [gr-qc/0511108] · Zbl 1091.83004 · doi:10.1088/0264-9381/23/6/015
[21] Bojowald, M., Hernández, H., Kagan, M., Singh, P., Skirzewski, A.: Formation and evolution of structure in loop cosmology. (to appear)
[22] Ashtekar A. (1987). New Hamiltonian formulation of general relativity. Phys. Rev. D 36:1587–1602 · doi:10.1103/PhysRevD.36.1587
[23] Barbero G.J.F. (1995). Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 51:5507–5510 [gr-qc/9410014] · doi:10.1103/PhysRevD.51.5507
[24] Bojowald M. (2002). Isotropic loop quantum cosmology. Class. Quant. Grav. 19:2717–2741 [gr-qc/0202077] · Zbl 1008.83037 · doi:10.1088/0264-9381/19/10/313
[25] Immirzi G. (1997). Real and complex connections for canonical gravity. Class. Quant. Grav. 14:L177–L181 · Zbl 0887.53059 · doi:10.1088/0264-9381/14/10/002
[26] Ashtekar A., Bojowald M., Lewandowski J. (2003). Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7:233–268 [gr-qc/0304074]
[27] Thiemann, T., QSD V: Quantum gravity as the natural regulator of matter quantum field theories. Class. Quant. Grav. 15, 1281–1314 (1998)[gr-qc/9705019] · Zbl 0945.83016
[28] Bojowald, M.: Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018 (2001) [gr-qc/0105067] · Zbl 0976.83021
[29] Bojowald M. (2002). Quantization ambiguities in isotropic quantum geometry. Class. Quant. Grav. 19:5113–5130 [gr-qc/0206053] · Zbl 1029.83016 · doi:10.1088/0264-9381/19/20/306
[30] Bojowald, M.: Loop quantum cosmology: recent progress. In: Proceedings of the International Conference on Gravitation and Cosmology (ICGC 2004) vol. 63 (2004) pp. 765–776, Cochin, India, Pramana [gr-qc/0402053]
[31] Rovelli C., Smolin L. (1994). The physical Hamiltonian in nonperturbative quantum gravity. Phys. Rev. Lett. 72:446–449 [gr-qc/9308002] · Zbl 0973.83523 · doi:10.1103/PhysRevLett.72.446
[32] Thiemann T. (1998). Quantum spin dynamics (QSD). Class. Quant. Grav. 15:839–873 [gr-qc/9606089] · Zbl 0956.83013 · doi:10.1088/0264-9381/15/4/011
[33] Gaul M., Rovelli C. (2001). A generalized Hamiltonian constraint operator in loop quantum gravity and its simplest Euclidean matrix elements. Class. Quant. Grav. 18:1593–1624 [gr-qc/0011106] · Zbl 0984.83027 · doi:10.1088/0264-9381/18/9/301
[34] Vandersloot, K.: On the Hamiltonian constraint of loop quantum cosmology. Phys. Rev. D 71, 103506 (2005) [gr-qc/0502082]
[35] Bojowald, M.: Inflation from quantum geometry. Phys. Rev. Lett. 89, 261301 (2002) [gr-qc/0206054] · Zbl 1267.83111
[36] Bojowald, M., Vandersloot, K.: Loop quantum cosmology, boundary proposals, and inflation. Phys. Rev. D 67, 124023 (2003) [gr-qc/0303072] · Zbl 1235.83043
[37] Singh, P., Vandersloot, K.: Semi-classical states, effective dynamics and classical emergence in loop quantum cosmology. Phys. Rev. D 72, 084004 (2005) [gr-qc/0507029]
[38] Banerjee K., Date G. (2005). Discreteness corrections to the effective Hamiltonian of isotropic loop quantum cosmology. Class. Quant. Grav. 22:2017–2033 [gr-qc/0501102] · Zbl 1071.83054 · doi:10.1088/0264-9381/22/11/007
[39] Willis, J.: On the Low-Energy Ramifications and a Mathematical Extension of Loop Quantum Gravity. PhD thesis, The Pennsylvania State University (2004)
[40] Bojowald, M., Skirzewski, A.: Quantum gravity and higher curvature actions. In: Current Mathematical Topics in Gravitation and Cosmology (42nd Karpacz Winter School of Theoretical Physics), [hep-th/0606232] · Zbl 1168.83308
[41] Bojowald, M., Lidsey, J. E., Mulryne, D. J., Singh, P., Tavakol, R.: Inflationary cosmology and quantization ambiguities in semi-classical loop quantum gravity. Phys. Rev. D 70, 043530 (2004) [gr-qc/0403106]
[42] Perez, A.: On the regularization ambiguities in loop quantum gravity. Phys. Rev. D 73, 044007 (2006) [gr-qc/0509118]
[43] Bojowald M., Rej A. (2005). Asymptotic properties of difference equations for isotropic loop quantum cosmology. Class. Quant. Grav. 22:3399–3420 [gr-qc/0504100] · Zbl 1135.83307 · doi:10.1088/0264-9381/22/17/003
[44] Rosen, J., Jung, J.-H., Khanna, G.: Instabilities in numerical loop quantum cosmology, [gr-qc/0607044] · Zbl 1133.83338
[45] Date G., Hossain G.M. (2004). Effective Hamiltonian for isotropic loop quantum cosmology. Class. Quant. Grav. 21:4941–4953 [gr-qc/0407073] · Zbl 1060.83019 · doi:10.1088/0264-9381/21/21/012
[46] Date, G., Hossain, G. M.: Genericity of big bounce in isotropic loop quantum cosmology. Phys. Rev. Lett. 94, 011302 (2005) [gr-qc/0407074]
[47] Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics [gr-qc/0607039] · Zbl 1197.83047
[48] Singh, P.: Loop cosmological dynamics and dualities with Randall–Sundrum braneworlds. Phys. Rev. D 73, 063508 (2006) [gr-qc/0603043]
[49] Ashtekar A., Lewandowski J., Marolf D., Mourão J., Thiemann T. (1995). Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36:6456–6493 [gr-qc/9504018] · Zbl 0856.58006 · doi:10.1063/1.531252
[50] Sahlmann H., Thiemann T., Winkler O. (2001). Coherent states for canonical quantum general relativity and the infinite tensor product extension. Nucl. Phys. B 606:401–440 [gr-qc/0102038] · Zbl 0971.83021 · doi:10.1016/S0550-3213(01)00226-7
[51] Bojowald, M., Morales-Técotl, H., Sahlmann, H.: On loop quantum gravity phenomenology and the issue of lorentz invariance. Phys. Rev. D 71, 084012 (2005) [gr-qc/0411101]
[52] Sahlmann, H., Thiemann, T.: Towards the QFT on curved spacetime limit of QGR. II: A concrete implementation. Class. Quant. Grav. 23, 909–954 (2006) [gr-qc/0207031] · Zbl 1098.83015
[53] Bojowald, M., Loop quantum cosmology: I. Kinematics. Class. Quant. Grav. 17, 1489–1508 (2000) [gr-qc/9910103] · Zbl 0969.83035
[54] Bojowald M. (2000). Loop quantum cosmology: II. volume operators. Class. Quant. Grav. 17:1509–1526 [gr-qc/9910104] · Zbl 0976.83020 · doi:10.1088/0264-9381/17/6/313
[55] Bojowald, M., Skirzewski, A.: Effective equations of motion for quantum systems. Rev. Math. Phys. [math–ph/0511043] · Zbl 1124.82010
[56] Singh, P., Toporensky, A.: Big crunch avoidance in k = 1 semi-classical loop quantum cosmology. Phys. Rev. D 69, 104008 (2004) [gr-qc/0312110]
[57] Vereshchagin, G.V.: Qualitative approach to semi-classical loop quantum cosmology. JCAP 07, 013 (2004) [gr-qc/0406108]
[58] Lidsey, J. E., Mulryne, D. J., Nunes, N. J., Tavakol, R.: Oscillatory universes in loop quantum cosmology and initial conditions for inflation. Phys. Rev. D 70, 063521 (2004) [gr-qc/0406042] · Zbl 1079.83012
[59] Nunes, N. J.: Inflation: a graceful entrance from loop quantum cosmology. Phys. Rev. D 72, 103510 (2005) [astro-ph/0507683]
[60] Bojowald, M., Date, G.: Quantum suppression of the generic chaotic behavior close to cosmological singularities. Phys. Rev. Lett. 92, 071302 (2004) [gr-qc/0311003]
[61] Bojowald, M., Maartens, R., Singh, P.: Loop quantum gravity and the cyclic universe. Phys. Rev. D 70, 083517 (2004) [hep-th/0407115]
[62] Bojowald, M., Goswami, R., Maartens, R., Singh, P.: A black hole mass threshold from non-singular quantum gravitational collapse. Phys. Rev. Lett. 95, 091302 (2005) [gr-qc/0503041]
[63] Lewandowski, J., Okołów, A., Sahlmann, H., Thieman, T.: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras [gr-qc/0504147] · Zbl 1188.83040
[64] Fleischhack, C.: Representations of the Weyl algebra in quantum geometry [math-ph/0407006] · Zbl 1228.81182
[65] Bojowald M., Hernández H.H., Morales-Técotl H.A. (2006). Perturbative degrees of freedom in loop quantum gravity: Anisotropies. Class. Quant. Grav. 23:3491–3516 [gr-qc/0511058] · Zbl 1096.83026 · doi:10.1088/0264-9381/23/10/017
[66] Varadarajan, M.: Gravitons from a loop representation of linearised gravity. Phys. Rev. D 66, 024017 (2002) [gr-qc/0204067]
[67] Sahlmann H., Thiemann T. (2006). Towards the QFT on curved spacetime limit of QGR. I: A General Scheme. Class. Quant. Grav. 23:867–908 [gr-qc/0207030] · Zbl 1098.83014 · doi:10.1088/0264-9381/23/3/019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.