×

Formation and evolution of structure in loop cosmology. (English) Zbl 1228.83043

Summary: Inhomogeneous cosmological perturbation equations are derived in loop quantum gravity, taking into account corrections, in particular, in the gravitational parts. This provides a framework for calculating the evolution of modes in structure formation scenarios related to inflationary or bouncing models. The applications here are corrections to the Newton potential and to the evolution of large scale modes which imply nonconservation of curvature perturbations, possibly noticeable in a running spectral index. These effects are sensitive to quantization procedures and test the characteristic behavior of correction terms derived from quantum gravity.

MSC:

83C45 Quantization of the gravitational field
83F05 Relativistic cosmology

References:

[1] DOI: 10.1103/PhysRevD.23.347 · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[2] DOI: 10.1103/PhysRevLett.90.151301 · doi:10.1103/PhysRevLett.90.151301
[3] C. Rovelli, in: Quantum Gravity (2004) · doi:10.1017/CBO9780511755804
[4] DOI: 10.1088/0264-9381/21/15/R01 · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[5] M. Bojowald, Living Rev. Relativity 8 pp 11– (2005) ISSN: http://id.crossref.org/issn/1433-8351 · Zbl 1255.83133 · doi:10.12942/lrr-2005-11
[6] DOI: 10.1103/PhysRevLett.86.5227 · doi:10.1103/PhysRevLett.86.5227
[7] DOI: 10.1088/0264-9381/20/13/310 · Zbl 1049.83008 · doi:10.1088/0264-9381/20/13/310
[8] DOI: 10.1088/0264-9381/21/4/034 · Zbl 1138.83315 · doi:10.1088/0264-9381/21/4/034
[9] DOI: 10.1103/PhysRevLett.95.061301 · doi:10.1103/PhysRevLett.95.061301
[10] DOI: 10.1103/PhysRevD.69.104008 · doi:10.1103/PhysRevD.69.104008
[11] DOI: 10.1103/PhysRevD.71.127502 · doi:10.1103/PhysRevD.71.127502
[12] DOI: 10.1103/PhysRevLett.96.141301 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[13] DOI: 10.1016/0550-3213(95)00150-Q · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[14] DOI: 10.1016/0550-3213(95)00550-5 · doi:10.1016/0550-3213(95)00550-5
[15] DOI: 10.1088/0264-9381/14/1A/006 · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[16] DOI: 10.1088/0264-9381/22/12/012 · Zbl 1077.83018 · doi:10.1088/0264-9381/22/12/012
[17] DOI: 10.1142/S0129055X06002772 · Zbl 1124.82010 · doi:10.1142/S0129055X06002772
[18] DOI: 10.1016/0370-1573(92)90044-Z · doi:10.1016/0370-1573(92)90044-Z
[19] DOI: 10.1088/0264-9381/15/4/011 · Zbl 0956.83013 · doi:10.1088/0264-9381/15/4/011
[20] DOI: 10.1088/0264-9381/15/5/012 · Zbl 0945.83016 · doi:10.1088/0264-9381/15/5/012
[21] DOI: 10.1007/s10714-006-0348-4 · Zbl 1157.83353 · doi:10.1007/s10714-006-0348-4
[22] DOI: 10.1103/PhysRevD.64.084018 · doi:10.1103/PhysRevD.64.084018
[23] DOI: 10.1088/0264-9381/19/20/306 · Zbl 1029.83016 · doi:10.1088/0264-9381/19/20/306
[24] DOI: 10.1103/PhysRevD.74.123512 · doi:10.1103/PhysRevD.74.123512
[25] DOI: 10.1103/PhysRevD.51.5507 · doi:10.1103/PhysRevD.51.5507
[26] DOI: 10.1103/PhysRevLett.97.151301 · Zbl 1228.83050 · doi:10.1103/PhysRevLett.97.151301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.