×

Abel-like differential equations with a unique limit cycle. (English) Zbl 1228.34060

Consider the scalar differential equation \[ {dx\over dt}= \Biggl(\sum^k_{l=1} a_l\sin^{i_l}(t)\cos^{j_l}(t)\Biggr)\, x^n+ b\sin^{i_b}(t)\cos^{j_b}(t) x^m,\tag{\(*\)} \] where \(n,m\geq 2\), \(i_l\), \(i_b\), \(j_l\), \(j_b\) are nonnegative integers. An isolated periodic solution of \((*)\) is called a limit cycle of \((*)\). The supremum of all limit cycles of \((*)\) over \((a_1,\dots, a_k, b)\in\mathbb{R}^{k+1}\) is called the Hilbert number \({\mathcal H}\) of \((*)\). The authors derive conditions which characterize the cases \({\mathcal H}= 0\) and \({\mathcal H}= 1\).

MSC:

34C25 Periodic solutions to ordinary differential equations

References:

[1] Lins Neto, A., On the number of solutions of the equation \(\frac{d x}{d t} = \sum_{j = 0}^n a_j(t) x^j, 0 \leq t \leq 1\), for which \(x(0) = x(1)\), Invent. Math., 59, 67-76 (1980) · Zbl 0448.34012
[2] Ilyashenko, Yu., Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc., 39, 301-354 (2002) · Zbl 1004.34017
[3] Devlin, J.; Lloyd, N. G.; Pearson, J. M., Cubic systems and Abel equations, J. Differential Equations, 147, 435-454 (1998) · Zbl 0911.34020
[4] Gasull, A.; Prohens, R.; Torregrosa, J., Limit cycles for rigid cubic systems, J. Math. Anal. Appl., 303, 391-404 (2005) · Zbl 1076.34031
[5] Gasull, A.; Torregrosa, J., Some results on rigid systems, (International Conference on Differential Equations. International Conference on Differential Equations, Equadiff-2003 (2005), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 340-345 · Zbl 1107.34310
[6] Álvarez, M. J.; Gasull, A.; Giacomini, H., A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234, 161-176 (2007) · Zbl 1118.34036
[7] Bravo, J. L.; Fernández, M.; Gasull, A., Limit cycles for some Abel equations having coefficients without fixed signs, Internat. J. Bifur. Chaos, 19, 11, 3869-3876 (2009) · Zbl 1182.34056
[8] Gasull, A.; Llibre, J., Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21, 5, 1235-1244 (1990) · Zbl 0732.34025
[9] Pliss, V. A., Non Local Problems of the Theory of Oscillations (1966), Academic Press: Academic Press New York · Zbl 0151.12104
[10] Álvarez, A.; Bravo, J. L.; Fernández, M., The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign, Commun. Pure Appl. Anal., 8, 5, 1493-1501 (2009) · Zbl 1273.34045
[11] Gasull, A.; Guillamon, A., Limit cycles for generalized Abel equations, Internat. J. Bifur. Chaos, 16, 3737-3745 (2006) · Zbl 1140.34348
[12] Lloyd, N. G., A note on the number of limit cycles in certain two-dimensional systems, J. Lond. Math. Soc., 20, 277-286 (1979) · Zbl 0407.34027
[13] Panov, A. A., The number of periodic solutions of polynomial differential equations, Math. Notes, 64, 5, 622-628 (1998) · Zbl 1013.34039
[14] Bravo, J. L.; Torregrosa, J., Abel-like equations with no periodic solutions, J. Math. Anal. Appl., 342, 931-942 (2008) · Zbl 1357.34074
[15] Álvarez, M. J.; Bravo, J. L.; Fernández, M., Uniqueness of limit cycles for polynomial first-order differential equations, J. Math. Anal. Appl., 360, 1, 168-189 (2009) · Zbl 1282.34040
[16] Briskin, M.; Françoise, J. P.; Yomdin, Y., Center conditions II: parametric and model center problems, Israel J. Math., 118, 61-82 (2000) · Zbl 0989.34021
[17] Pakovich, F.; Muzychuk, M., Solution of the polynomial moment problem, Proc. Lond. Math. Soc., 99, 3, 633-657 (2009) · Zbl 1177.30046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.