×

Center conditions. II: Parametric and model center problems. (English) Zbl 0989.34021

The paper is concerned with the following initial value problem for Abel’s equation \[ y'=p(x)y^2+ q(x)y^3,\quad y(0)=y_0, \tag{1} \] where \(p\) and \(q\) are polynomials of the degree \(d_1\) and \(d_2\), respectively. A center condition for the IVP (1) is known as \(y_0=y(0) \equiv y(1)\) for any solution \(y(x)\) to (1). Introducing a parameter in the IVP (1) \[ y'=p(x) y^2+ \varepsilon q(x)y^3, \quad y(0)=y_0, \tag{2} \] where \(p\) and \(q\) are as above and \(\varepsilon\) is a complex number, the authors formulate a parametric center condition for the IVP (2) as \(y(\varepsilon,0) \equiv y(\varepsilon,1)\) for any solution \(y(\varepsilon,x)\) to (2). It is shown that the parametric center condition implies that all the moments \(m_k(1)\) vanish, where \[ m_k(x)= \int^x_0 P^k (t)q(t)dt, \quad P(z)=\int^x_0 p(t)dt. \] The paper is a continuation of the papers by the same authors [Nonlinearity 11, No. 3, 431-443 (1998; Zbl 0905.34051)] and Center conditions, compositions of polynomials and moments on algebraic curves, Ergodic Theory Dyn. Syst. 19, No. 5, 1201-1220 (1999; Zbl 0990.34017)], and one of its main purposes is to prove a conjecture stated in the latter paper for some special cases developing moment techniques and an algebraic analysis of the \(m_k(x)\) and their representation in a canonical form. Finally, a combinatorial approach to the problem of stabilization of the moment sequence is briefly discussed.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Akhiezer, N. I., The Classical Moment Problem (1965), Edinburgh, London: Oliver and Boyd, Edinburgh, London · Zbl 0135.33803
[2] Alwash, M. A. M., On a condition for a centre of cubic non-autonomous equations, Proceedings of the Royal Society of Edinburgh, 113A, 289-291 (1989) · Zbl 0685.34025
[3] Alwash, M. A. M.; Lloyd, N. G., Non-autonomous equations related to polynomial two-dimensional systems, Proceedings of the Royal Society of Edinburgh, 105A, 129-152 (1987) · Zbl 0618.34026
[4] Alwash, M. A. M.; Lloyd, N. G., Periodic solutions of a quartic nonautonomous equation, Nonlinear Analysis. Theory, Methods and Applications, 11, 809-820 (1987) · Zbl 0636.34032 · doi:10.1016/0362-546X(87)90109-X
[5] Arnold, V. I.; Il’yashenko, Yu., Ordinary differential equations, Encyclopedia of Mathematical Sciences 1 (Dynamical Systems—I) (1988), Berlin: Springer, Berlin · Zbl 0659.58012
[6] Benedetti, R.; Risler, J.-J., Real algebraic and semi-algebraic sets, Actualités Mathématiques (1990), Paris: Hermann, Paris · Zbl 0694.14006
[7] M. Blinov, MA thesis, The Weizmann Institute of Science, Rehovot, 1997.
[8] M. Blinov and Y. Yomdin,Generalized center conditions and multiplicities for polynomial Abel equations of small degrees, preprint, The Weizmann Institute of Science, 1997.
[9] Briskin, M.; Francoise, J.-P.; Yomdin, Y., The Bautin ideal of the Abel equation, Nonlinearity, 11, 431-443 (1998) · Zbl 0905.34051 · doi:10.1088/0951-7715/11/3/003
[10] Briskin, M.; Francoise, J.-P.; Yomdin, Y., Center conditions, composition of polynomials and moments on algebraic curves, Ergodic Theory and Dynamical Systems, 19, 1201-1220 (1999) · Zbl 0990.34017 · doi:10.1017/S0143385799141737
[11] M. Briskin, J.-P. Francoise and Y. Yomdin,Center conditions III: More on parametric and model center problems, Israel Journal of Mathematics, this volume. · Zbl 0989.34022
[12] Devlin, J., Word problem related to periodic solutions of a non-autonomous system, Mathematical Proceedings of the Cambridge Philosophical Society, 108, 127-151 (1990) · Zbl 0726.34026 · doi:10.1017/S0305004100069012
[13] Devlin, J., Word problems related to derivatives of the displacement map, Mathematical Proceedings of the Cambridge Philosophical Society, 110, 569-579 (1991) · Zbl 0744.34032
[14] Neto, A. Lins, On the number of solutions of the equation x′=P(x,t) for which x(0)=x(1), Inventiones Mathematicae, 59, 67-76 (1980) · Zbl 0448.34012 · doi:10.1007/BF01390315
[15] Novikov, D.; Yakovenko, S., Simple exponential estimate for the number of zeroes of complete Abelian integrals, Annales de l’Institut Fourier (Grenoble), 45, 897-927 (1995) · Zbl 0832.58028
[16] Ritt, J. F., Prime and composite polynomials, Transaction of the American Mathematical Society, 23, 51-66 (1922) · JFM 48.0079.01 · doi:10.2307/1988911
[17] Widder, D. V., The Laplace Transform (1946), N.J.: Princeton University Press, N.J.
[18] Wilf, H. S.; Zeilberger, D., An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Inventiones Mathematicae, 108, 575-633 (1992) · Zbl 0739.05007 · doi:10.1007/BF02100618
[19] Zeilberger, D., A holonomic systems approach to special functions identities, Journal of Computational and Applied Mathematics, 32, 321-368 (1990) · Zbl 0738.33001 · doi:10.1016/0377-0427(90)90042-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.