×

Normal automorphisms of relatively hyperbolic groups. (English) Zbl 1227.20041

An automorphism \(\alpha\) of a group \(G\) is normal if \(\alpha(N)=N\) for every normal subgroup \(N\) of \(G\). Obviously every inner automorphism is normal. Let \(\operatorname{Aut}_n(G)\), \(\text{Inn}(G)\), \(\text{Out}_n(G)\) denote, respectively, the subset of normal automorphisms, the set of inner automorphisms and the quotient group \(\operatorname{Aut}_n(G)/\text{Inn}(G)\).
The authors prove that for any relatively hyperbolic group \(G\), \(\text{Out}_n(G)\) is finite, and if in addition \(G\) is non-elementary and has no finite non-trivial normal subgroups, then \(\text{Out}_n(G)=1\).
Earlier, similar results were known for many other classes of groups. For example, \(\text{Out}_n(G)\) is trivial for non-Abelian free groups (Lubotzky), for non-trivial free products (M. V. Neshchadim), fundamental groups of closed surfaces of negative Euler characteristic (O. Bogopolski, E. Kudryavtseva, H. Zieschang), non-Abelian free Burnside groups of large odd exponent (E. Cherepanov), non-Abelian free solvable groups (V. Roman’kov), free nilpotent groups of class \(c=2\) (for \(c\geq 3\) this is not true) (G. Endimioni), free profinite groups (Jarden), and free soluble pro-\(p\)-groups (N. Romanovskiĭ).
As an application of the main result, the authors prove that \(\text{Out}(G)=\operatorname{Aut}(G)/\text{Inn}(G)\) is residually finite for every finitely generated residually finite group \(G\) with infinitely many ends.

MSC:

20F67 Hyperbolic groups and nonpositively curved groups
20E36 Automorphisms of infinite groups
20F28 Automorphism groups of groups
20E26 Residual properties and generalizations; residually finite groups
57M07 Topological methods in group theory
20F65 Geometric group theory

References:

[1] R. B. J. T. Allenby, Goansu Kim, and C. Y. Tang, On the residual finiteness of \?\?\?(\?\(_{1}\)(\?)) of certain Seifert manifolds, Algebra Colloq. 10 (2003), no. 2, 121 – 126. · Zbl 1040.20023
[2] R. B. J. T. Allenby, Goansu Kim, and C. Y. Tang, Residual finiteness of outer automorphism groups of certain pinched 1-relator groups, J. Algebra 246 (2001), no. 2, 849 – 858. · Zbl 1023.20010 · doi:10.1006/jabr.2001.8987
[3] G. Arzhantseva, A. Minasyan, and D. Osin, The SQ-universality and residual properties of relatively hyperbolic groups, J. Algebra 315 (2007), no. 1, 165 – 177. · Zbl 1132.20022 · doi:10.1016/j.jalgebra.2007.04.029
[4] Gilbert Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc. 38 (1963), 117 – 118. · Zbl 0124.26003 · doi:10.1112/jlms/s1-38.1.117
[5] Mladen Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), no. 1, 143 – 161. · Zbl 0652.57009 · doi:10.1215/S0012-7094-88-05607-4
[6] Oleg Bogopolski, Elena Kudryavtseva, and Heiner Zieschang, Simple curves on surfaces and an analog of a theorem of Magnus for surface groups, Math. Z. 247 (2004), no. 3, 595 – 609. · Zbl 1084.20027 · doi:10.1007/s00209-003-0634-8
[7] B.H. Bowditch, Relatively hyperbolic groups, preprint, 1999.
[8] Inna Bumagin and Daniel T. Wise, Every group is an outer automorphism group of a finitely generated group, J. Pure Appl. Algebra 200 (2005), no. 1-2, 137 – 147. · Zbl 1082.20021 · doi:10.1016/j.jpaa.2004.12.033
[9] E. A. Cherepanov, Normal automorphisms of free Burnside groups of large odd exponents, Internat. J. Algebra Comput. 16 (2006), no. 5, 839 – 847. · Zbl 1115.20024 · doi:10.1142/S0218196706003268
[10] François Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003), 933 – 963. · Zbl 1037.20042 · doi:10.2140/gt.2003.7.933
[11] Cornelia Druţu and Mark Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), no. 5, 959 – 1058. With an appendix by Denis Osin and Mark Sapir. · Zbl 1101.20025 · doi:10.1016/j.top.2005.03.003
[12] Manfred Droste, Michèle Giraudet, and Rüdiger Göbel, All groups are outer automorphism groups of simple groups, J. London Math. Soc. (2) 64 (2001), no. 3, 565 – 575. · Zbl 1015.20027 · doi:10.1112/S0024610701002484
[13] G. Endimioni, Pointwise inner automorphisms in a free nilpotent group, Q. J. Math. 53 (2002), no. 4, 397 – 402. · Zbl 1060.20025 · doi:10.1093/qjmath/53.4.397
[14] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810 – 840. · Zbl 0985.20027 · doi:10.1007/s000390050075
[15] F. T. Farrell and L. E. Jones, The lower algebraic \?-theory of virtually infinite cyclic groups, \?-Theory 9 (1995), no. 1, 13 – 30. · Zbl 0829.19002 · doi:10.1007/BF00965457
[16] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75 – 263. · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7_3
[17] Edna K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974/75), 160 – 164. · Zbl 0292.20032 · doi:10.1112/jlms/s2-9.1.160
[18] Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317 – 429. · Zbl 1211.20038 · doi:10.1007/s11856-008-1070-6
[19] Daniel Groves and Jason Fox Manning, Fillings, finite generation and direct limits of relatively hyperbolic groups, Groups Geom. Dyn. 1 (2007), no. 3, 329 – 342. · Zbl 1169.20023 · doi:10.4171/GGD/16
[20] Vincent Guirardel, Limit groups and groups acting freely on \Bbb R\(^{n}\)-trees, Geom. Topol. 8 (2004), 1427 – 1470. · Zbl 1114.20013 · doi:10.2140/gt.2004.8.1427
[21] Vincent Guirardel and Gilbert Levitt, The outer space of a free product, Proc. Lond. Math. Soc. (3) 94 (2007), no. 3, 695 – 714. · Zbl 1168.20011 · doi:10.1112/plms/pdl026
[22] C. Hrushka, Relative hyperbolicity and relative quasiconvexity for countable groups, preprint. arXiv:0801.4596. · Zbl 1408.03034
[23] G. Christopher Hruska and Bruce Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005), 1501 – 1538. With an appendix by the authors and Mohamad Hindawi. · Zbl 1087.20034 · doi:10.2140/gt.2005.9.1501
[24] Olga Kharlampovich and Alexei Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006), no. 2, 451 – 552. · Zbl 1110.03020 · doi:10.1016/j.jalgebra.2006.03.033
[25] Alexander Lubotzky, Normal automorphisms of free groups, J. Algebra 63 (1980), no. 2, 494 – 498. · Zbl 0432.20025 · doi:10.1016/0021-8693(80)90086-1
[26] V. Metaftsis, M. Sykiotis, On the residual finiteness of outer automorphisms of relatively hyperbolic groups, preprint. arXiv:math/0608685v2. · Zbl 1197.20029
[27] Ashot Minasyan, Groups with finitely many conjugacy classes and their automorphisms, Comment. Math. Helv. 84 (2009), no. 2, 259 – 296. · Zbl 1180.20033 · doi:10.4171/CMH/162
[28] Ashot Minasyan, On residualizing homomorphisms preserving quasiconvexity, Comm. Algebra 33 (2005), no. 7, 2423 – 2463. · Zbl 1120.20047 · doi:10.1081/AGB-200058383
[29] M. V. Neshchadim, Free products of groups that do not have outer normal automorphisms, Algebra i Logika 35 (1996), no. 5, 562 – 566, 625 (Russian, with Russian summary); English transl., Algebra and Logic 35 (1996), no. 5, 316 – 318. · doi:10.1007/BF02367356
[30] Viatcheslav N. Obraztsov, Embedding into groups with well-described lattices of subgroups, Bull. Austral. Math. Soc. 54 (1996), no. 2, 221 – 240. · Zbl 0864.20018 · doi:10.1017/S0004972700017688
[31] Denis V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (2006), no. 1, 99 – 118. · Zbl 1100.20033 · doi:10.1142/S0218196706002901
[32] Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295 – 326. · Zbl 1116.20031 · doi:10.1007/s00222-006-0012-3
[33] Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100. · Zbl 1093.20025 · doi:10.1090/memo/0843
[34] Frédéric Paulin, Outer automorphisms of hyperbolic groups and small actions on \?-trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331 – 343. · Zbl 0804.57002 · doi:10.1007/978-1-4612-3142-4_12
[35] D.Y. Rebbechi, Algorithmic properties of relatively hyperbolic groups, Ph.D. thesis. arXiv: math/0302245.
[36] V. N. Remeslennikov, Finite approximability of groups with respect to conjugacy, Sibirsk. Mat. Ž. 12 (1971), 1085 – 1099 (Russian).
[37] V. A. Roman\(^{\prime}\)kov, Normal automorphisms of discrete groups, Sibirsk. Mat. Zh. 24 (1983), no. 4, 138 – 149 (Russian). · Zbl 0518.20028
[38] Chih-han Sah, Automorphisms of finite groups, J. Algebra 10 (1968), 47 – 68. · Zbl 0159.31001 · doi:10.1016/0021-8693(68)90104-X
[39] Jean-Pierre Serre, Arbres, amalgames, \?\?\(_{2}\), Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass; Astérisque, No. 46. · Zbl 0369.20013
[40] Z. Sela, Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal. 16 (2006), no. 3, 707 – 730. · Zbl 1118.20035 · doi:10.1007/s00039-006-0565-8
[41] John Stallings, Group theory and three-dimensional manifolds, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969; Yale Mathematical Monographs, 4. · Zbl 0241.57001
[42] John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312 – 334. · Zbl 0238.20036 · doi:10.2307/1970577
[43] Pekka Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157 – 187. · Zbl 0855.30036
[44] Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41 – 89. · Zbl 1043.20020 · doi:10.1515/crll.2004.007
[45] V. Yedynak, Multielement order separability in free products of groups, Comm. in Algebra, to appear. · Zbl 1220.20019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.