×

Hadamard spaces with isolated flats. (With an appendix written jointly with Mohamad Hindawi). (English) Zbl 1087.20034

In this paper, \(X\) is a CAT(0) space and \(\Gamma\) is a group acting isometrically, properly discontinuously and cocompactly on \(X\). For \(k\geq 2\), a \(k\)-flat in \(X\) is an isometrically embedded Euclidean space \(\mathbb{E}^n\) in \(X\). \(\text{Flat}(X)\) denotes the space of all flats in \(X\) with the topology of Hausdorff convergence on bounded sets. The space \(X\) is said to ‘have isolated flats’ with respect to the \(\Gamma\) action if \(X\) contains an equivariant collection \(\mathcal F\) of flats such that \(\mathcal F\) is closed and isolated in \(\text{Flat}(X)\), and each flat in \(X\) is contained in a uniformly bounded tubular neighborhood of some flat in the collection \(\mathcal F\). CAT(0) spaces with isolated flats were first considered by Kapovich-Leeb and by Wise, independently.
One of the main objects of the paper under review is the exploration of various notions of isolated flats and the proof that these notions are equivalent.
The authors obtain the following results: Theorem 1: Let \(X\) be a CAT(0) space and \(\Gamma\) a group acting isometrically, properly discontinuously and cocompactly on \(X\). Then, the following are equivalent: (1) \(X\) has isolated flats; (2) the Tits boundary of \(X\) is a disjoint union of isolated points and standard Euclidean spheres; (3) \(X\) is a relatively hyperbolic space with respect to a family of flats; (4) \(\Gamma\) is a relatively hyperbolic group with respect to a collection of virtually Abelian subgroups of rank \(\geq 2\).
The authors also obtain the following, as a consequence of Theorem 1: Theorem 2: Let \(X\) be a CAT(0) space and \(\Gamma\) a group acting isometrically, properly discontinuously and cocompactly on \(X\) with isolated flats. Then, the following properties hold: (1) quasi-isometries of \(X\) map maximal flats to maximal flats; (2) a finitely generated subgroup \(H\leq\Gamma\) is undistorted if and only if it is quasiconvex (with respect to the CAT(0) action); (3) the geometric (i.e. the visual) boundary of \(X\) is a group invariant of \(\Gamma\); (4) \(\Gamma\) satisfies the strong Tits alternative: every subgroup of \(\Gamma\) either is virtually Abelian or contains a free subgroup of rank two; (5) \(\Gamma\) is biautomatic.
In an appendix written jointly with M. Hindawi, the authors show that many of the results of this article extend to a more general class of CAT(0) spaces, where the collection \(\mathcal F\) of flat subspaces is replaced by a collection of closed convex subspaces of \(X\).

MSC:

20F67 Hyperbolic groups and nonpositively curved groups
20F69 Asymptotic properties of groups
20E07 Subgroup theorems; subgroup growth

References:

[1] S B Alexander, I D Berg, R L Bishop, Geometric curvature bounds in Riemannian manifolds with boundary, Trans. Amer. Math. Soc. 339 (1993) 703 · Zbl 0793.53039 · doi:10.2307/2154294
[2] E Alibegović, M Bestvina, Limit groups are \(\mathrm{CAT}(0)\), J. London Math. Soc. \((2)\) 74 (2006) 259 · Zbl 1171.57001 · doi:10.1112/S0024610706023155
[3] W Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar 25, Birkhäuser Verlag (1995) · Zbl 0834.53003
[4] W Ballmann, M Brin, Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 (1994) 165 · Zbl 0832.57002 · doi:10.1007/BF01265309
[5] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985) · Zbl 0591.53001
[6] W Ballmann, J Świ\catkowski, On groups acting on nonpositively curved cubical complexes, Enseign. Math. \((2)\) 45 (1999) 51 · Zbl 0989.20029
[7] N Benakli, Polygonal complexes I: Combinatorial and geometric properties, J. Pure Appl. Algebra 97 (1994) 247 · Zbl 0859.57003 · doi:10.1016/0022-4049(94)00013-1
[8] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245 · Zbl 0789.57007 · doi:10.1006/jfan.1993.1052
[9] B H Bowditch, Relatively hyperbolic groups, preprint, University of Southampton (1999) · Zbl 1259.20052
[10] M R Bridson, On the existence of flat planes in spaces of nonpositive curvature, Proc. Amer. Math. Soc. 123 (1995) 223 · Zbl 0840.53033 · doi:10.2307/2160630
[11] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999) · Zbl 0988.53001
[12] S V Buyalo, Geodesics in Hadamard spaces, Algebra i Analiz 10 (1998) 93 · Zbl 0918.53018
[13] I Chatterji, K Ruane, Some geometric groups with rapid decay, Geom. Funct. Anal. 15 (2005) 311 · Zbl 1134.22005 · doi:10.1007/s00039-005-0508-9
[14] C B Croke, B Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000) 549 · Zbl 0959.53014 · doi:10.1016/S0040-9383(99)00016-6
[15] C B Croke, B Kleiner, The geodesic flow of a nonpositively curved graph manifold, Geom. Funct. Anal. 12 (2002) 479 · Zbl 1035.53116 · doi:10.1007/s00039-002-8255-7
[16] C Dru\ctu, M Sapir, Relatively hyperbolic groups with rapid decay property, Int. Math. Res. Not. (2005) 1181 · Zbl 1077.22006 · doi:10.1155/IMRN.2005.1181
[17] C Dru\ctu, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959 · Zbl 1101.20025 · doi:10.1016/j.top.2005.03.003
[18] P Eberlein, Geodesic flows on negatively curved manifolds II, Trans. Amer. Math. Soc. 178 (1973) 57 · Zbl 0264.53027 · doi:10.2307/1996689
[19] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992) · Zbl 0764.20017
[20] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810 · Zbl 0985.20027 · doi:10.1007/s000390050075
[21] S M Gersten, H B Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990) 305 · Zbl 0714.20016 · doi:10.1007/BF01233430
[22] S M Gersten, H Short, Small cancellation theory and automatic groups II, Invent. Math. 105 (1991) 641 · Zbl 0734.20014 · doi:10.1007/BF01232283
[23] M Gromov, Hyperbolic manifolds, groups and actions, Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183 · Zbl 0467.53035
[24] M Gromov, Hyperbolic groups, Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 · Zbl 0634.20015
[25] M Gromov, Asymptotic invariants of infinite groups, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1 · Zbl 0841.20039
[26] D Groves, Limits of (certain) \(\mathrm{CAT}(0)\) groups II: the Hopf property and the shortening argument
[27] F Haglund, Les polyèdres de Gromov, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 603 · Zbl 0749.52011
[28] J Heber, Hyperbolische geodatische Raume, Diplomarbeit, Universität Bonn (1987)
[29] M A Hindawi, Large scale geometry of 4-dimensional closed nonpositively curved real analytic manifolds, Int. Math. Res. Not. (2005) 1803 · Zbl 1098.53028 · doi:10.1155/IMRN.2005.1803
[30] G C Hruska, Nonpositively curved 2-complexes with isolated flats, Geom. Topol. 8 (2004) 205 · Zbl 1063.20048 · doi:10.2140/gt.2004.8.205
[31] G C Hruska, Geometric invariants of spaces with isolated flats, Topology 44 (2005) 441 · Zbl 1120.20046 · doi:10.1016/j.top.2004.10.001
[32] M Kapovich, B Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, Geom. Funct. Anal. 5 (1995) 582 · Zbl 0829.57006 · doi:10.1007/BF01895833
[33] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. (1997) · Zbl 0910.53035 · doi:10.1007/BF02698902
[34] B Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften 326, Universität Bonn Mathematisches Institut (2000) · Zbl 1005.53031
[35] G Moussong, Hyperbolic Coxeter groups, PhD thesis, Ohio State University (1988)
[36] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621 · Zbl 0911.57002 · doi:10.1016/S0040-9383(97)00018-9
[37] D V Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006) · Zbl 1093.20025
[38] D Y Rebbechi, Algorithmic properties of relatively hyperbolic groups, PhD thesis, Rutgers University (2001)
[39] M Sageev, D T Wise, The Tits alternative for \(\mathrm{CAT}(0)\) cubical complexes, Bull. London Math. Soc. 37 (2005) 706 · Zbl 1081.20051 · doi:10.1112/S002460930500456X
[40] V Schroeder, A cusp closing theorem, Proc. Amer. Math. Soc. 106 (1989) 797 · Zbl 0678.53034 · doi:10.2307/2047438
[41] H Short, Quasiconvexity and a theorem of Howson’s, World Sci. Publ., River Edge, NJ (1991) 168 · Zbl 0869.20023
[42] J M Wilson, A CAT(0) group with uncountably many distinct boundaries, J. Group Theory 8 (2005) 229 · Zbl 1079.20061 · doi:10.1515/jgth.2005.8.2.229
[43] D T Wise, Subgroup separability of the figure 8 knot group, Topology 45 (2006) 421 · Zbl 1097.20030 · doi:10.1016/j.top.2005.06.004
[44] D T Wise, Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups, PhD thesis, Princeton University (1996)
[45] X Xie, Groups acting on \(\mathrm{CAT}(0)\) square complexes, Geom. Dedicata 109 (2004) 59 · Zbl 1078.57006 · doi:10.1007/s10711-004-1527-7
[46] X Xie, Tits alternative for closed real analytic 4-manifolds of nonpositive curvature, Topology Appl. 136 (2004) 87 · Zbl 1048.53025 · doi:10.1016/S0166-8641(03)00184-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.