×

Linearly implicit schemes for a class of dispersive-dissipative systems. (English) Zbl 1223.65050

The authors discuss linearly implicit schemes for a class of dispersive-dissipative systems. They first consider an implicit-explicit Euler scheme, and then they discuss a second order implicit-explicit backward difference formulas scheme. Finally, they apply their abstract results to four examples, namely, a simple system of ordinary differential equations, the dispersively modified Kuramoto-Sivashinsky equation, the Topper-Kawahara equations in two space dimensions, and to systems of Kuramoto-Sivashinsky type equations.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics

Software:

RODAS
Full Text: DOI

References:

[1] Akrivis, G., Crouzeix, M.: Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73, 613–635 (2004) · Zbl 1045.65079
[2] Akrivis, G., Smyrlis, Y.-S.: Implicit–explicit BDF spectral methods for the Kuramoto–Sivashinsky equation. Appl. Numer. Math. 51, 151–169 (2004) · Zbl 1057.65069 · doi:10.1016/j.apnum.2004.03.002
[3] Akrivis, G., Crouzeix, M., Makridakis, Ch.: Implicit–explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67, 457–477 (1998) · Zbl 0896.65066 · doi:10.1090/S0025-5718-98-00930-2
[4] Akrivis, G., Crouzeix, M., Makridakis, Ch.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999) · Zbl 0936.65118 · doi:10.1007/s002110050429
[5] Akrivis, G., Papageorgiou, D.T., Smyrlis, Y.-S.: Linearly implicit methods for a semilinear parabolic system arising in two-phase flows. IMA J. Numer. Anal. (2010, to appear). doi: 10.1093/imanum/drp034 · Zbl 1428.35339
[6] Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150–155 (1966) · Zbl 0148.23003
[7] Biagioni, H.A., Linares, F.: On the Benney–Lin and Kawahara equations. J. Math. Anal. Appl. 211, 131–152 (1997) · Zbl 0876.35100 · doi:10.1006/jmaa.1997.5438
[8] Brezis, H.: Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1983)
[9] Frenkel, A.L., Indireshkumar, K.: Wavy film flows down an inclined plane: perturbation theory and general evolution equation for the film thickness. Phys. Rev. E (3) 60, 4143–4157 (1999) · doi:10.1103/PhysRevE.60.4143
[10] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems, 2nd edn. Springer, Berlin (1991) · Zbl 0729.65051
[11] Kas-Danouche, S., Papageorgiou, D.T., Siegel, M.: A mathematical model for core-annular flows with surfactants. Divulg. Mat. 12, 117–138 (2004) · Zbl 1100.35087
[12] Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976) · Zbl 0342.47009
[13] Kawahara, T., Toh, S.: On some properties of solutions to a nonlinear evolution equation including long–wavelength instability. In: Nonlinear Wave Motion. Pitman Monogr. Surveys Pure Appl. Math., vol. 43, pp. 95–117. Longman Sci. Tech., Harlow (1989) · Zbl 0678.35085
[14] Lang, J.: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications. Lecture Notes in Computational Science and Engineering, vol. 16. Springer, Berlin (2001) · Zbl 0963.65102
[15] Lax, P.D.: Functional Analysis. Wiley-Interscience, New York (2002) · Zbl 1009.47001
[16] Lin, S.P.: Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63, 417–429 (1974) · Zbl 0283.76035 · doi:10.1017/S0022112074001704
[17] Lubich, C., Ostermann, A.: Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15, 555–583 (1995) · Zbl 0834.65092 · doi:10.1093/imanum/15.4.555
[18] Papageorgiou, D.T., Maldarelli, C., Rumschitzki, D.S.: Nonlinear interfacial stability of cone-annular film flow. Phys. Fluids A 2, 340–352 (1990) · Zbl 0704.76060 · doi:10.1063/1.857784
[19] Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math. Comput. 33, 521–534 (1979) · Zbl 0451.65055 · doi:10.1090/S0025-5718-1979-0521273-8
[20] Tadmor, E.: The well-posedness of the Kuramoto–Sivashinsky equation. SIAM J. Math. Anal. 17, 884–893 (1986) · Zbl 0606.35073 · doi:10.1137/0517063
[21] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006) · Zbl 1105.65102
[22] Topper, J., Kawahara, T.: Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Jpn. 44, 663–666 (1978) · Zbl 1334.76054 · doi:10.1143/JPSJ.44.663
[23] Zlámal, M.: Finite element methods for nonlinear parabolic equations. RAIRO 11, 93–107 (1977) · Zbl 0385.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.