×

A delay model for viral infection in toxin producing phytoplankton and zooplankton system. (English) Zbl 1222.37098

Summary: An eco-epidemiological delay model is proposed and analysed for virally infected, toxin producing phytoplankton (TPP) and zooplankton system. It is shown that time delay can destabilize the otherwise stable non-zero equilibrium state. The coexistence of all species is possible through periodic solutions due to Hopf bifurcation. In the absence of infection the delay model may have a complex dynamical behavior which can be controlled by infection. Numerical simulation suggests that the proposed model displays a wide range of dynamical behaviors. Different parameters are identified that are responsible for chaos.

MSC:

37N25 Dynamical systems in biology
92D40 Ecology
34K13 Periodic solutions to functional-differential equations
34K18 Bifurcation theory of functional-differential equations
34K20 Stability theory of functional-differential equations
Full Text: DOI

References:

[1] Rice, E. L., Allelopathy (1984), Academic Press: Academic Press London
[2] Kirk, K.; Gilbert, J., Variations in herbivore response to chemical defences: zooplankton foraging on toxic cyanobacteria, Ecology, 73, 220-228 (1992)
[3] Odum, E. P., Fundamentals of ecology (1971), W.B. Saunders Company: W.B. Saunders Company London
[4] Sarkar, R. R.; Chattopadhayay, J., Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism-mathematical models and experimental observations, J Theor Biol, 224, 501-516 (2003) · Zbl 1465.92098
[5] Chattopadhayay, J.; Sarkar, R. R., A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J Math Appl Med Biol, 19, 137-161 (2002) · Zbl 1013.92046
[6] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-preys system, J Math Biol, 36, 389-406 (1998) · Zbl 0895.92032
[7] Gakkhar, S.; Sahani, S., Effects of seasonal growth on delayed prey-predator model, Chaos Solitons Fractals, 39, 230-239 (2009) · Zbl 1197.34134
[8] Gakkhar, S.; Sahani, S., Effect of seasonal growth on ratio-dependent delayed prey-predator model, Commun Nonlinear Sci Numer Simul, 14, 850-862 (2009) · Zbl 1221.34187
[9] Sarkar, Time lags can control algal blooms in two harmful phytoplankton-zooplankton systems, Appl Math Comput, 186, 445-459 (2007) · Zbl 1111.92065
[10] Kuang, Y., Delay differential equations with applications in population dynamics (1993), Academic Press: Academic Press San Diego · Zbl 0777.34002
[11] Fuhrman, J. A., Marine viruses and their biogeochemical and ecological effects, Nature, 399, 541-548 (1999)
[12] Wommack, K. E.; Colwell, R. R., Virioplankton: viruses in aquatic ecosystems, Microbiol Mol Biol Rev, 64, 69-114 (2000)
[13] Suttle, C. A.; Chan, A. M., Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross infectivity and growth characteristics, Mar Ecol Prog Ser, 92, 99-109 (1993)
[14] Beltrami, E.; Carroll, T. O., Modelling the role of viral disease in recurrent phytoplankton blooms, J Math Biol, 32, 857-863 (1994) · Zbl 0825.92122
[15] Singh, B. K.; Chattopadhyay, J.; Sinha, S., A role of viral infection in a simple phytoplankton zooplankton system, J Theor Bio, 231, 153-166 (2004) · Zbl 1447.92475
[16] Xiao, Y.; Chen, L., Modelling and analysis of a predator-prey model with disease in the prey, Math Biosci, 171, 59-82 (2001) · Zbl 0978.92031
[17] Freedman, H. I., Deterministic mathematical models in population biology (1980), Marcel Dekker: Marcel Dekker New York · Zbl 0448.92023
[18] Hall, S. R.; Duffy, M. A.; Caceres, C. E., Selective predation and productivity jointly drive complex behaviour in host-parasite systems, Am Nat, 165, 70-81 (2005)
[19] Gakkhar, S.; Negi, K., A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Appl Math Comput, 179, 301-313 (2006) · Zbl 1096.92042
[20] Schmidt, G.; Tondl, A., Nonlinear vibrations (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0589.73027
[21] Moore, J., Parasites and the behaviour of animals (2002), Oxford Univ. Press: Oxford Univ. Press Oxford
[22] Murray, D. L.; Carry, J. R.; Keith, L. B., Interactive effects of sub lethal nematodes status on snowshoe hare vulnerability to predation?, J Anim Ecol, 66, 250-264 (1997)
[23] Hudson, P. J.; Dobson, A. P.; Newborn, D., Do parasites make pray vulnerable to predation? Red grouse and parasites, J Anim Ecol, 61, 681-692 (1992)
[24] Hale, J. K., Theory of functional differential equations (1977), Springer: Springer New York · Zbl 0352.34001
[25] Freedman, H. I.; Rao, V. S.H., The trade-off between mutual interference and time lags in predator-prey-systems, Bull Math Bio, 45, 991-1003 (1983) · Zbl 0535.92024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.