×

Time lags can control algal bloom in two harmful phytoplankton-zooplankton system. (English) Zbl 1111.92065

Summary: A mathematical model consisting two harmful phytoplankton and zooplankton with discrete time lags in the mortality of zooplankton due to liberation of toxic substances by harmful phytoplankton has been considered. A stable co-existence of all the species has been observed for a no-delay situation. Introduction of single delay in the system causes recurrent algal bloom and a threshold for the delay parameter has been estimated. Further, presence of multiple (two) delays control the oscillatory situation and can be used for termination of planktonic bloom.
The analytical results as well as numerical simulations of our study lead to several threshold values for the delay parameters which play important roles in the marine ecological problems. An interesting observation is that multiple delays resolve the plankton ‘paradox’ and establish a positive effect of the competitive exclusion principle for stable co-existence of the species.

MSC:

92D40 Ecology
34K20 Stability theory of functional-differential equations
65L99 Numerical methods for ordinary differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations
Full Text: DOI

References:

[1] Smayda, T., Bloom dynamics: physiology, behaviour, trophic effects, Limnol. Oceaongr., 42, 5, part 2, 1132-1136 (1997)
[2] Hallam, T.; Clark, C.; Jordan, G., Effects of toxicants on population: a qualitative approach. ii. First order kinetics, J. Theor. Biol., 18, 25-37 (1983) · Zbl 0548.92019
[3] Arzul, G.; Siguel, M.; Guzman, L.; Denn, E., Comparison of allelopathic properties in three toxic Alexandrium species, J. Exp. Mar. Biol. Ecol., 232, C11, 285-295 (1999)
[4] Chan, A.; Andersen, R.; Blanc, M.; Harrison, P., Algal planting as tool for investigating allelopathy among marine microalgae, Mar. Biol., 84, 287-291 (1980)
[5] Nielsen, T.; Kiørboe, T.; Bjørnsen, P., Effects of Chrysochromulina polylepis subsurface bloom on the plankton community, Mar. Ecol. Prog. Ser., 62, 21-35 (1990)
[6] Schimdt, L.; Hansen, P., Allelopathy in the prymnesiophyte Chryschromulina polylepis: effect of cell concentration, growth phase and ph, Mar. Ecol. Prog. Ser., 216, 67-81 (2001)
[7] Fistarol, G.; Legrand, C.; Graneli, E., Allelopathic effect of Primnesium parvum on a natural plankton community, Mar. Ecol. Prog. Ser., 255, 115-125 (2003)
[8] Fistarol, G.; Legrand, C.; Selander, E.; Hummert, C.; Stolte, W.; Graneli, E., Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures, Aquat. Microb. Ecol., 35, 45-56 (2004)
[9] Sole, J.; Garcia-Ladona, E.; Ruardij, P.; Estrada, M., Modelling allelopathy among marine algae, Ecol. Model., 183, 373-384 (2005)
[10] Burkholder, J.; Glasgow, H., Interactions of a toxic estuarine dinoflagellate with microbial predators and prey, Arch. Protistenkd., 145, 177-188 (1995)
[11] K. Keating, Algal metabolite influence on bloom sequence in eutrophic freshwater ponds, in: E.P.A. Ecological Monograph Series, EPA. 600/3-76-081, Govt. Print. OH, Washington, DC, 1976, pp. 148-152.; K. Keating, Algal metabolite influence on bloom sequence in eutrophic freshwater ponds, in: E.P.A. Ecological Monograph Series, EPA. 600/3-76-081, Govt. Print. OH, Washington, DC, 1976, pp. 148-152.
[12] Lefevre, M.; Jakob, H.; Nisbet, M., Auto et heteroantagonisme chezlesalgnes d’eau dome in vitro et daus les collections d’eau naturrells, Ann. Sta. Contr. Hydro. App., 4 (1952)
[13] Kirk, K.; Gilbert, J., Variations in herbivore response to chemical defences: zooplankton foraging on toxic cyanobacteria, Ecology, 73, 2208-2217 (1992)
[14] Odum, E., Fundamentals of Ecology (1971), W.B. Saunders Company: W.B. Saunders Company Philadelphia
[15] Boney, A., Phytoplankton (1976), Edward Arnold Ltd.: Edward Arnold Ltd. London
[16] Buskey, E.; Stockwell, D., Effects of a persistent brown tide on zooplankton population in the laguna madre of southern Texas, (Smayda, T.; Shimuzu, Y., Toxic Phytoplankton Blooms in the Sea (1993), Elsevier: Elsevier Amsterdam), 659-666
[17] Estep, K.; Nejstgaard, J.; Skjoldal, H.; Rey, F., Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey, Mar. Ecol. Prog. Ser., 67, 235-249 (1990)
[18] Hansen, F., Trophic interaction between zooplankton and Paeocystis cf. Globosa, Helgolander Meeresunters., 49, 283-293 (1995)
[19] Huntley, M.; Sykes, P.; Rohan, S.; Marin, V., Chemically mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance, Mar. Ecol. Prog. Ser., 28, 105-120 (1986)
[20] Ives, J., Possible mechanism underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates, J. Exp. Mar. Biol. Ecol., 112, 131-145 (1987)
[21] Buskey, E.; Hyatt, C., Effects of Texas (USA) brown tide alga on planktonic grazers, Mar. Ecol. Prog. Ser., 126, 285-292 (1995)
[22] Stewart, F.; Levin, B., Resource partition and the outcome of interspecific competition: a model and some general considerations, Am. Nat., 107, 171 (1973)
[23] Armstrong, R.; McGehee, R., Competitive exclusion, Am. Nat., 115, 151-170 (1980)
[24] Levin, B.; Stewart, F.; Chao, L., Resource limited growth, competition and predation: a model and experimental studies with bacteria and bacteriophase, Am. Nat., 111, 3 (1977)
[25] Lenski, R.; Hattingh, S., Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics, J. Theor. Biol., 122, 83-93 (1986)
[26] Tilman, D., Resource competition between planktonic algae: an experimental and theoretical approach, Ecology, 58, 338-348 (1977)
[27] Tilman, D., Test of resource competition theory using four species of lake Michigan algae, Ecology, 62, 802-815 (1981)
[28] Sommer, U., Comparison between steady state and non-steady state competition: experiments with natural phytoplankton, Limnol. Oceanogr., 30, 335-346 (1985)
[29] Sommer, U., Nitrate and silicate competition among Antartic phytoplankton, Mar. Biol., 91, 345-351 (1986)
[30] Scheffer, M.; Rinaldi, S.; Gragnani, L.; van Nes, E., On the dominance of filamentous cyanobacteria in shallow turbid lakes, Ecology, 78, 272-282 (1997)
[31] Huisman, J.; Weissing, F., Biodiversity of plankton by oscillations and chaos, Nature, 402, 407-410 (1999)
[32] Maynard Smith, J., Models in Ecology (1974), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0312.92001
[33] Chattopadhyay, J., Effect of toxic substances on a two species competitive system, Ecol. Model., 84, 287-291 (1996)
[34] Mukhopadhyay, A.; Chattopadhyay, J.; Tapaswi, P., A delay differential equations model of plankton allelopathy, Math. Biosci., 149, 167-189 (1998) · Zbl 0946.92031
[35] Nakamaru, M.; Iwasa, Y., Competition by allelopathy proceeds in travelling waves: colicin-immune aids colicin-sensitive strain, Theor. Popul. Biol., 57, 131-144 (2000) · Zbl 0976.92027
[36] Sarkar, R.; Chattopadhyay, J., Occurence of planktonic blooms under environmental fluctuations and its possible control mechanism – mathematical models and experimental observations, J. Theor. Biol., 224, 501-516 (2003) · Zbl 1465.92098
[37] R. Sarkar, Mathematical modelling of harmful algal blooms, in: C. Pahl-Wostl, S. Schmidt, A. Rizzoli, A. Jakeman (Eds.), Complexity and Integrated Resources Management, vol. 2 of ISBN 88-900787-1-5, Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society, 2004, pp. 876-882.; R. Sarkar, Mathematical modelling of harmful algal blooms, in: C. Pahl-Wostl, S. Schmidt, A. Rizzoli, A. Jakeman (Eds.), Complexity and Integrated Resources Management, vol. 2 of ISBN 88-900787-1-5, Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society, 2004, pp. 876-882.
[38] Sarkar, R.; Pal, S.; Chattopadhyay, J., Role of toxin producing plankton and their effect on phytoplankton-zooplankton system – a mathematical study supported by experimental findings, BioSystems, 80, 11-23 (2005)
[39] Sarkar, R.; Malchow, H., Nutrient and toxin producing phytoplankton control algal blooms – a spatiotemporal study in a noisy environment, J. Biosci., 30, 5, 749-760 (2005)
[40] Chattopadhyay, J.; Sarkar, R.; Abdllaoui, A. E., A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Math. Appl. Med. Biol., 19, 137-161 (2002) · Zbl 1013.92046
[41] Chattopadhyay, J.; Sarkar, R.; Mandal, S., Toxin-producing plankton may act as a biological control for planktonic blooms – field study and mathematical modelling, J. Theor. Biol., 215, 3, 333-344 (2002)
[42] Sarkar, R.; Petrovskii, S.; Biswas, M.; Gupta, A.; Chattopadhyay, J., An ecological study of a marine plankton community based on the field data collected from Bay of Bengal, Ecol. Model., 193, 589-601 (2006)
[43] Kuang, Y., Delay Differential Equations with Application in Population Dynamics (1993), Academic Press: Academic Press New York · Zbl 0777.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.