×

A delay decomposition approach to \({\mathcal L}_2-{\mathcal L}_\infty\) filter design for stochastic systems with time-varying delay. (English) Zbl 1220.93077

Summary: This paper investigates the problem of \({\mathcal L}_2-{\mathcal L}_\infty\) filter design for a class of stochastic systems with time-varying delay. The addressed problem is the design of a full order linear filter such that the error system is asymptotically mean-square stable and a prescribed \({\mathcal L}_2-{\mathcal L}_\infty\) performance is satisfied. In order to develop a less conservative filter design, a new Lyapunov-Krasovskii functional (LKF) is constructed by decomposing the delay interval into multiple equidistant subintervals, and a new integral inequality is established in the stochastic setting. Then, based on the LKF and integral inequality, the delay-dependent conditions for the existence of \({\mathcal L}_2-{\mathcal L}_\infty\) filters are obtained in terms of Linear Matrix Inequalities (LMIs). The resulting filters can ensure that the error system is asymptotically mean-square stable and the peak value of the estimation error is bounded by a prescribed level for all possible bounded energy disturbances. Finally, two examples are given to illustrate the effectiveness of the proposed method.

MSC:

93E11 Filtering in stochastic control theory
93E15 Stochastic stability in control theory

Software:

LMI toolbox
Full Text: DOI

References:

[1] Anderson, B. D.O.; Moore, J. B., Optimal filtering (1979), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0758.93070
[2] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (1994), SIAM: SIAM Philadelphia, PA · Zbl 0816.93004
[3] Deng, Z.; Shi, P.; Yang, H.; Xia, Y., Robust \(H_\infty\) filtering for nonlinear systems with interval time-varying delays, International Journal of Innovative Computing, Information and Control, 6, 12, 5527-5538 (2010)
[4] Emara-Shabaik, H. E.; Mahmoud, M. S.; Shi, Y., \(H_2\) and \(H_\infty\) filtering for linear systems with unknown inputs and polytopic uncertainty, International Journal of Innovative Computing, Information and Control, 6, 5, 2211-2220 (2010)
[5] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M., LMI control toolbox (1995), The Math Works: The Math Works Natick, MA
[6] Gao, H.; Lames, J.; Wang, C., Robust energy-to-peak filter design for stochastic time-delay systems, Systems & Control Letters, 55, 2, 101-111 (2006) · Zbl 1129.93538
[7] Gershon, E.; Limebeer, D. J.N.; Shaked, U.; Yaesh, I., Robust \(H_\infty\) filtering of stationary continuous-time linear systems with stochastic uncertainties, IEEE Transactions on Automatic Control, 46, 11, 1788-1793 (2001) · Zbl 1016.93067
[8] Green, M.; Limebeer, D. J.N., Linear robust control (1995), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0951.93500
[9] Grigoriadis, K. M.; Watson, J. T., Reduced-order \(H_\infty\) and \(L_2 - L_\infty\) filtering via linear matrix inequalities, IEEE Transactions on Aerospace and Electronic Systems, 33, 4, 1326-1338 (1997)
[10] Gu, K., A further refinement of discretized Lyapunov functional method for the stability of time-delay systems, International Journal of Control, 74, 10, 967-976 (2001) · Zbl 1015.93053
[11] Gu, K.; Kharitonov, V.; Chen, J., Stability of time-delay systems (2003), Birkhäuser: Birkhäuser Boston · Zbl 1039.34067
[12] Hale, J. K.; Lunel, S. M.V., Introduction to functional differential equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[13] Han, Q. L., Absolute stability of time-delay systems with sector bounded nonlinearity, Automatica, 41, 12, 2171-2176 (2005) · Zbl 1100.93519
[14] Han, Q. L., A discrete delay decomposition approach to stability of linear retarded and neutral systems, Automatica, 45, 2, 517-524 (2009) · Zbl 1158.93385
[15] Hinrichsen, D.; Pritchard, A. J., Stochastic \(H_\infty \), SIAM Journal on Control and Optimization, 36, 5, 1504-1538 (1998) · Zbl 0914.93019
[16] Liu, J.; Hu, S.; Tian, E., A novel method of \(H_\infty\) filter design for time-varying delay systems, ICIC Express Letters, 4, 3A, 667-673 (2010)
[17] Liu, Y.; Wang, W., Fuzzy \(H_\infty\) filtering for nonlinear stochastic systems with missing measurements, ICIC Express Letters, 3, 3B, 739-744 (2009)
[18] Liu, Y.; Wang, Z.; Liu, X., Robust \(H_\infty\) control for a class of nonlinear stochastic systems with mixed time-delay, International Journal of Robust and Nonlinear Control, 17, 16, 1525-1551 (2007) · Zbl 1128.93015
[19] Liu, Y.; Wang, Z.; Liu, X., Robust \(H_\infty\) filtering for discrete nonlinear stochastic systems with time-varying delay, Journal of Mathematical Analysis and Applications, 341, 1, 318-336 (2008) · Zbl 1245.93131
[20] Mao, X., Robustness of exponential stability of stochastic differential delay equations, IEEE Transactions on Automatic Control, 41, 3, 442-447 (1996) · Zbl 0851.93074
[21] Mao, X.; Koroleva, N.; Rodkina, A., Robust stability of uncertain stochastic differential delay equations, Systems & Control Letters, 35, 5, 325-336 (1998) · Zbl 0909.93054
[22] Mohler, R. R.; Kolodziej, W. J., An overview of stochastic bilinear control processes, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 10, 12, 913-918 (1980) · Zbl 0475.93054
[23] Nagpal, K., Abedor, J., & Poolla, K. (1994). An LMI approach to peak-to-peak gain minimisation: filtering and control. In Proceedings of the American control conference; Nagpal, K., Abedor, J., & Poolla, K. (1994). An LMI approach to peak-to-peak gain minimisation: filtering and control. In Proceedings of the American control conference
[24] Palhares, R. M.; Peres, P. L.D., Robust filtering with guaranteed energy-to-peak performance-an LMI approach, Automatica, 36, 6, 851-858 (2000) · Zbl 0953.93067
[25] Simon, D., Optimal state estimation: Kalman, \(H_\infty \), and nonlinear approaches (2006), Wiley-Interscience: Wiley-Interscience Hoboken, NJ
[26] Tseng, C.-S., Robust fuzzy filter design for nonlinear systems with persistent bounded disturbances, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 36, 4, 940-945 (2006)
[27] Wu, M.; He, Y.; She, J. H.; Liu, G. P., Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, 40, 8, 1435-1439 (2004) · Zbl 1059.93108
[28] Xia, J.; Xu, S.; Song, B., Delay-dependent \(L_2 - L_\infty\) filter design for stochastic time-delay systems, Systems & Control Letters, 56, 9-10, 579-587 (2007) · Zbl 1157.93530
[29] Xu, S.; Chen, T., Reduced-order \(H_\infty\) filtering for stochastic systems, IEEE Transactions on Signal Processing, 50, 12, 2998-3007 (2002) · Zbl 1369.94325
[30] Xu, S.; Chen, T., Robust \(H_\infty\) control for uncertain stochastic systems with state delay, IEEE Transactions on Automatic Control, 47, 12, 2089-2094 (2002) · Zbl 1364.93755
[31] Xu, S.; Chen, T., Robust \(H_\infty\) filtering for uncertain stochastic time-delay systems, Asian Journal of Control, 5, 3, 364-373 (2003)
[32] Zhang, W.; Chen, B.-S.; Tseng, C.-S., Robust \(H_\infty\) filtering for nonlinear stochastic systems, IEEE Transactions on Signal Processing, 53, 2, 589-598 (2005) · Zbl 1370.93293
[33] Zhang, X. M.; Han, Q. L., A delay decomposition approach to delay-dependent stability for linear systems with time-varying delays, International Journal of Robust and Nonlinear Control, 19, 17, 1922-1930 (2009) · Zbl 1185.93106
[34] Zhao, Y.; Gao, H.; Lames, J.; Du, B., Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach, IEEE Transactions on Fuzzy Systems, 17, 4, 750-762 (2009)
[35] Zhou, Q.; Chen, B.; Li, H.; Lin, C., Delay-range-dependent \(L_2 - L_\infty\) filtering for stochastic systems with time-varying interval delay, Circuits, Systems and Signal Processing, 28, 2, 331-348 (2009) · Zbl 1171.93397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.