×

Effect of the Darcy number on the energy flow and operating conditions of a thermoacoustic porous-medium system. (English) Zbl 1219.80072

Summary: In this paper, a simplified porous medium thermoacoustic system is modeled to observe its energy interaction characteristics and identify its operating conditions mainly as a function of porous medium Darcy number. The governing Darcy-Brinkman momentum equation and energy equation are simplified and linearized by using a first order perturbation analysis. Similar perturbation analysis is usually used to solve the linear thermoacoustic problem in the low Mach number limit. Simplified momentum and energy equations are solved, in the frequency domain, in order to obtain the expressions of the fluctuating velocity \((u_{1})\) and temperature \((T_{1})\). Time averaged and space averaged heat fluxes and work fluxes are calculated using the expressions of fluctuating velocity and temperature. The effects of the drive ratio (DR), Darcy number \((Da_{\delta })\), temperature gradient (\(\nabla T_{m}\)), and frequency \((f)\) on the heat flux, work flux, and operating conditions are discussed and graphically presented.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76D05 Navier-Stokes equations for incompressible viscous fluids
76Q05 Hydro- and aero-acoustics
Full Text: DOI

References:

[1] Kaviany, M.: Principle of heat transfer in porous media, (1995) · Zbl 0889.76002
[2] Bejan, A.: Porous media, Heat transfer handbook, 1131-1180 (2003)
[3] Bejan, A.; Dincer, I.; Lorente, S.; Miguel, A. F.; Reis, A. H.: Porous and complex flow structures in modern technologies, (2004)
[4] Pop, I.; Ingham, D. B.: Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media, (2001)
[5] , Transport phenomena in porous media (2005)
[6] , Handbook of porous media (2005)
[7] Vafai, K.: Porous media: applications in biological systems and biotechnology, (2010)
[8] Nield, D. A.; Bejan, A.: Convection in porous media, (2006) · Zbl 1256.76004
[9] , Emerging topics in heat and mass transfer in porous media (2008)
[10] Swift, G. W.: Thermoacoustics: A unifying perspective for some engines and refrigerators, (2002)
[11] Rott, N.: Thermoacoustics, Adv. appl. Mech. 20, 135-175 (1980) · Zbl 0496.76078
[12] Swift, G. W.: Thermoacoustic engines, J. acoust. Soc. am. 84, 1145-1180 (1988)
[13] Wheatley, J.; Swift, G. W.; Migliori, A.: The natural heat engine, Los alamos sci. 14, 2-33 (1986)
[14] Adeff, J. A.; Hofler, T. J.; Atchley, A. A.; Moss, W. C.: Measurements with reticulated vitreous carbon stacks in thermoacoustic prime movers and refrigerators, J. acoust. Soc. am. 104, 32-38 (1998)
[15] Roh, H. S.; Raspet, R.; Bass, H. E.: Parallel capillary-tube-based extension of thermoacoustic theory for random porous media, J. acoust. Soc. am. 121, 1413-1422 (2007)
[16] Jensen, C.; Raspet, R.: Thermoacoustic properties of fibrous materials, J. acoust. Soc. am. 127, 3470-3484 (2010)
[17] Panhuis, P. H. M.W.I.; Rienstra, S. W.; Molenaar, J.; Slot, J. H. M.: Weakly nonlinear thermoacoustics for stacks with slowly varying pore cross-sections, J. fluid mech. 618, 41-70 (2009) · Zbl 1156.76440 · doi:10.1017/S0022112008004291
[18] Tasnim, S. H.; Fraser, R. A.: Modeling and analysis of flow thermal and energy fields within stacks of thermoacoustic engines filled with porous media: a conjugate problem, ASME J. Therm. sci. Eng. appl. 1, 041006-1-041006-12 (2009)
[19] Mahmud, S.; Fraser, R. A.: Therporaoustic convection: modeling and analysis of flow thermal and energy fields, ASME J. Heat transfer 131, 101011-1-101011-12 (2009)
[20] Santillan, A. O.; Boullosa, R. R.: Space dependence of acoustic power and heat flux in the thermoacoustic effect, Int. commun. Heat mass transfer 22, 539-548 (1995)
[21] Vafai, K.; Tien, C. L.: Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat mass transfer 24, 195-203 (1981) · Zbl 0464.76073 · doi:10.1016/0017-9310(81)90027-2
[22] Haji-Sheikh, A.; Nield, D. A.; Hooman, K.: Heat transfer in the thermal entrance region for flow through rectangular porous passages, Int. J. Heat mass transfer 49, 3004-3015 (2006) · Zbl 1189.76594 · doi:10.1016/j.ijheatmasstransfer.2006.01.040
[23] Burmeister, L. C.: Convective heat transfer, (1993)
[24] Martynenko, O. G.; Khramtsov, P. P.: Free-convective heat transfer, (2005)
[25] Kinsler, L. W.; Frey, A. R.; Coppens, A. B.; Sanders, J. V.: Fundamental of acoustics, (2000)
[26] Tominaga, A.: Thermodynamic aspects of thermoacoustic theory, Cryogenics 35, 427-440 (1995)
[27] Landau, L. D.; Lifshitz, E. M.: Fluid mechanics, (1982) · Zbl 0146.22405
[28] Cao, N.; Olson, J. R.; Swift, G. W.; Chen, S.: Energy flux density in a thermoacoustic couple, J. acoust. Soc. am. 99, 3456-3464 (1996)
[29] Ishikawa, H.; Mee, D. J.: Numerical investigation of flow and energy fields near a thermoacoustic couple, J. acoust. Soc. am. 111, 831-839 (2002)
[30] Raspet, R.; Bass, H. E.; Kordomenos, J.: Thermoacoustics of travelling waves: theoretical analysis for an inviscid ideal gas, J. acoust. Soc. am. 94, 2232-2239 (1993)
[31] Richardson, E. G.; Tyler, E.: The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established, Proc. roy. Soc. lond. A 42, 1-15 (1929) · JFM 55.1147.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.