×

Weakly nonlinear thermoacoustics for stacks with slowly varying pore cross-sections. (English) Zbl 1156.76440

Summary: A general theory of thermoacoustics is derived for arbitrary stack pores. Previous theoretical treatments of porous media are extended by considering arbitrarily shaped pores with the only restriction that the pore cross-sections vary slowly in the longitudinal direction. No boundary-layer approximation is necessary. Furthermore, the model allows temperature variations in the pore wall. By means of a systematic approach based on dimensional analysis and small parameter asymptotics, we derive a set of ordinary differential equations for the mean temperature and the acoustic pressure and velocity, where the equation for the mean temperature follows as a consistency condition of the assumed asymptotic expansion. The problem of determining the transverse variation is reduced to finding a Green’s function for a modified Helmholtz equation and solving two additional integral equations. Similarly the derivation of streaming is reduced to finding a single Green’s function for the Poisson equation on the desired geometry.

MSC:

76Q05 Hydro- and aero-acoustics
76S05 Flows in porous media; filtration; seepage
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Swift, J. Acoust. Soc. of Am. 84 pp 1146– (1988) · doi:10.1121/1.396617
[2] DOI: 10.1121/1.403896 · doi:10.1121/1.403896
[3] Chapman, The Mathematical Theory of Non-uniform Gases; an Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases. (1939) · JFM 65.1541.01
[4] DOI: 10.1007/BF01590805 · doi:10.1007/BF01590805
[5] Chapman, High Speed Flow. (2000)
[6] DOI: 10.1016/S0065-2156(08)70233-3 · Zbl 0472.76094 · doi:10.1016/S0065-2156(08)70233-3
[7] DOI: 10.1121/1.1394739 · doi:10.1121/1.1394739
[8] DOI: 10.1007/BF01596277 · doi:10.1007/BF01596277
[9] DOI: 10.1121/1.429343 · doi:10.1121/1.429343
[10] DOI: 10.1007/BF01594958 · doi:10.1007/BF01594958
[11] DOI: 10.1061/(ASCE)0733-9399(2002)128:8(817) · doi:10.1061/(ASCE)0733-9399(2002)128:8(817)
[12] DOI: 10.1007/BF01593998 · doi:10.1007/BF01593998
[13] DOI: 10.1016/0020-7225(91)90001-J · Zbl 0749.73003 · doi:10.1016/0020-7225(91)90001-J
[14] DOI: 10.1007/BF01595562 · Zbl 0167.55202 · doi:10.1007/BF01595562
[15] DOI: 10.1121/1.399947 · doi:10.1121/1.399947
[16] DOI: 10.1121/1.2436632 · doi:10.1121/1.2436632
[17] DOI: 10.1121/1.401432 · doi:10.1121/1.401432
[18] Rijke, Annln Phys. 107 pp 339– (1859) · doi:10.1002/andp.18591830616
[19] DOI: 10.1017/S0022112003006050 · Zbl 1052.76063 · doi:10.1017/S0022112003006050
[20] Rayleigh, Theory of Sound (1945)
[21] DOI: 10.1016/0009-2509(93)80266-S · doi:10.1016/0009-2509(93)80266-S
[22] DOI: 10.1121/1.428635 · doi:10.1121/1.428635
[23] DOI: 10.1121/1.408581 · doi:10.1121/1.408581
[24] Nyborg, Physical Acoustics pp 265– (1965)
[25] DOI: 10.1017/S0022112075001954 · Zbl 0309.76060 · doi:10.1017/S0022112075001954
[26] Mattheij, Partial Differential Equations: Modeling, Analysis, Computation (2005) · Zbl 1090.35001 · doi:10.1137/1.9780898718270
[27] DOI: 10.1021/j150433a004 · doi:10.1021/j150433a004
[28] Landau, Fluid Mechanics. (1959)
[29] Kröner, Modeling Small Deformations of Polycrystals, chap. Statistical modeling (1986)
[30] DOI: 10.1016/0031-8914(49)90061-0 · Zbl 0041.57706 · doi:10.1016/0031-8914(49)90061-0
[31] Kirchhoff, Annln Phys. 134 pp 177– (1868) · doi:10.1002/andp.18682100602
[32] DOI: 10.1007/s00466-002-0315-1 · Zbl 1076.76578 · doi:10.1007/s00466-002-0315-1
[33] Hornung, Homogenization and Porous Media (1997) · Zbl 0872.35002 · doi:10.1007/978-1-4612-1920-0
[34] Gusev, Acustica 86 pp 25– (2000)
[35] DOI: 10.1121/1.1370358 · doi:10.1121/1.1370358
[36] Gifford, Adv. Cryog. Engng 1 pp 302– (1966)
[37] DOI: 10.1016/S0065-2156(08)70276-X · Zbl 0709.73008 · doi:10.1016/S0065-2156(08)70276-X
[38] DOI: 10.1119/1.1621034 · doi:10.1119/1.1621034
[39] DOI: 10.1016/0031-8914(49)90078-6 · doi:10.1016/0031-8914(49)90078-6
[40] Duffy, Green’s Functions with Applications. (2001) · Zbl 0983.35003 · doi:10.1201/9781420034790
[41] Swift, A Unifying Perspective for Some Engines and Refrigerators. (2002)
[42] Sondhauss, Annln Phys. 79 pp 1– (1850) · doi:10.1002/andp.18501550102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.