×

On the singular Weyl-Titchmarsh function of perturbed spherical Schrödinger operators. (English) Zbl 1219.34037

The authors consider perturbed spherical Schrödinger operators (also known as Bessel operators) of the form
\[ -\frac{d^2}{dx^2}+\frac{l(l+1)}{x^2}+q(x),\quad l\geq-\tfrac{1}{2},\;x\in(0,\infty), \]
where the potential \(q\) is real-valued satisfying \(q\in L_{\text{loc}}^1(0,\infty)\), \(xq(x)\in L^1(0,1)\) for \(l>-1/2\), and \(x(1-\log(x))q(x)\in L^1(0,1)\) for \(l=-1/2\). They investigate the singular Weyl-Titchmarsh \(m\)-function and show existence and detailed properties of a fundamental system of solutions which are entire with respect to the energy parameter. Based on this they show that the singular \(m\)-function belongs to the generalized Nevanlinna class and connect their results with the theory of super singular perturbations. The paper contains appendices devoted to Hardy type inequalities, generalized Navanlinna functions, and the theory of super singular perturbations.
Reviewer: Pavel Rehak (Brno)

MSC:

34B20 Weyl theory and its generalizations for ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
34L05 General spectral theory of ordinary differential operators

References:

[1] Abramovitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1972), Dover: Dover New York · Zbl 0543.33001
[2] Albeverio, S.; Hryniv, R.; Mykytyuk, Ya., Inverse spectral problems for Bessel operators, J. Differential Equations, 241, 130-159 (2007) · Zbl 1129.34004
[3] Berezin, F. A., On the Lee model, Mat. Sb., 60, 425-453 (1963), (in Russian) · Zbl 0178.57902
[4] Bôcher, M., On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic, Trans. Amer. Math. Soc., 1, 40-52 (1900) · JFM 31.0345.01
[5] Bulla, W.; Gesztesy, F., Deficiency indices and singular boundary conditions in quantum mechanics, J. Math. Phys., 26, 10, 2520-2528 (1985) · Zbl 0583.35029
[6] Derkach, V., Extensions of Laguerre operators in indefinite inner product spaces, Math. Notes, 63, 449-459 (1998) · Zbl 0923.47018
[7] Derkach, V.; Hassi, S.; de Snoo, H., Singular perturbations of self-adjoint operators, Math. Phys. Anal. Geom., 6, 349-384 (2003) · Zbl 1051.47011
[8] Dijksma, A.; Kurasov, P.; Shondin, Yu., Higher order singular rank one perturbations of a positive operator, Integral Equations Operator Theory, 53, 209-245 (2005) · Zbl 1104.47024
[9] Dijksma, A.; Langer, H.; Shondin, Y.; Zeinstra, C., Self-adjoint operators with inner singularities and Pontryagin spaces, (Operator Theory and Related Topics, vol. II. Operator Theory and Related Topics, vol. II, Odessa, 1997. Operator Theory and Related Topics, vol. II. Operator Theory and Related Topics, vol. II, Odessa, 1997, Oper. Theory Adv. Appl., vol. 118 (2000), Birkhäuser: Birkhäuser Basel), 105-175 · Zbl 0965.47022
[10] Dijksma, A.; Luger, A.; Shondin, Y., Approximation of \(N_\kappa^\infty \)-functions I: Models and regularization, (Behrndt, J.; etal., Spectral Theory in Inner Product Spaces and Applications. Spectral Theory in Inner Product Spaces and Applications, Oper. Theory Adv. Appl., vol. 188 (2008), Birkhäuser: Birkhäuser Basel), 87-112 · Zbl 1182.47037
[11] Dijksma, A.; Shondin, Yu., Singular point-like perturbations of the Bessel operator in a Pontryagin space, J. Differential Equations, 164, 49-91 (2000) · Zbl 0960.47021
[12] Everitt, W. N.; Kalf, H., The Bessel differential equation and the Hankel transform, J. Comput. Appl. Math., 208, 3-19 (2007) · Zbl 1144.34013
[13] Fulton, C., Titchmarsh-Weyl \(m\)-functions for second order Sturm-Liouville problems, Math. Nachr., 281, 1417-1475 (2008) · Zbl 1165.34011
[14] Fulton, C.; Langer, H., Sturm-Liouville operators with singularities and generalized Nevanlinna functions, Complex Anal. Oper. Theory, 4, 179-243 (2010) · Zbl 1214.34022
[15] Gesztesy, F.; Zinchenko, M., On spectral theory for Schrödinger operators with strongly singular potentials, Math. Nachr., 279, 1041-1082 (2006) · Zbl 1108.34063
[16] Guillot, J.-C.; Ralston, J. V., Inverse spectral theory for a singular Sturm-Liouville operator on \([0, 1]\), J. Differential Equations, 76, 353-373 (1988) · Zbl 0688.34013
[17] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1934), Cambridge Univ. Press · Zbl 0010.10703
[18] Kac, I. S.; Krein, M. G., \(R\)-functions—analytic functions mapping the upper halfplane into itself, (Amer. Math. Soc. Transl. Ser. 2, vol. 103 (1974)), 1-19 · Zbl 0291.34016
[19] Kostenko, A.; Sakhnovich, A.; Teschl, G., Inverse eigenvalue problems for perturbed spherical Schrödinger operators, Inverse Problems, 26, 105013 (2010), 14 pp · Zbl 1227.34023
[20] Kostenko, A.; Sakhnovich, A.; Teschl, G., Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials · Zbl 1248.34027
[21] Krein, M. G.; Langer, G. K., The defect subspaces and generalized resolvents of a Hermitian operator in the space \(\Pi_\kappa \), Funct. Anal. Appl., 5, 2, 59-71 (1971), (in Russian) · Zbl 0236.47034
[22] Krein, M. G.; Langer, H., Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume \(\Pi_\kappa\) zusammenhängen. Teil I: Einige Funktionenklassen und ihre Darstellungen, Math. Nachr., 77, 187-236 (1977) · Zbl 0412.30020
[23] Kurasov, P., \(H_{- n}\)-perturbations of self-adjoint operators and Kreinʼs resolvent formula, Integral Equations Operator Theory, 45, 437-460 (2003) · Zbl 1031.47016
[24] P. Kurasov, A. Luger, An operator theoretic interpretation of the generalized Titchmarsh-Weyl coefficient for the singular Sturm-Liouville problem, preprint.; P. Kurasov, A. Luger, An operator theoretic interpretation of the generalized Titchmarsh-Weyl coefficient for the singular Sturm-Liouville problem, preprint. · Zbl 1267.34052
[25] Langer, H., A characterization of generalized zeros of negative type of functions of the class \(N_\kappa \), (Advances in Invariant Subspaces and Other Results of Operator Theory. Advances in Invariant Subspaces and Other Results of Operator Theory, Oper. Theory Adv. Appl., vol. 17 (1986)), 201-212 · Zbl 0605.30031
[26] Lesch, M.; Vertman, B., Regular-singular Sturm-Liouville operators and their zeta-determinants · Zbl 1230.34077
[27] Serier, F., The inverse spectral problem for radial Schrödinger operators on \([0, 1]\), J. Differential Equations, 235, 101-126 (2007) · Zbl 1119.34006
[28] Shondin, Yu. G., Quantum-mechanical models in \(R_n\) associated with extensions of the energy operator in Pontryagin space, Theoret. Math. Phys., 74, 220-230 (1988) · Zbl 0685.46047
[29] Simon, B., Spectral analysis of rank one perturbations and applications, (Feldman, J.; Froese, R.; Rosen, L. M., Proc. Mathematical Quantum Theory II: Schrödinger Operators. Proc. Mathematical Quantum Theory II: Schrödinger Operators, CRM Proc. Lecture Notes, vol. 8 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0824.47019
[30] Teschl, G., Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Grad. Stud. Math. (2009), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1166.81004
[31] Weidmann, J., Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math., vol. 1258 (1987), Springer: Springer Berlin · Zbl 0647.47052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.