×

On the \(p\)-adic \(L\)-function of Hilbert modular forms at supersingular primes. (English) Zbl 1219.11135

The \(p\)-adic \(L\)-function \(L_p(f,\cdot)\) attached to an elliptic modular form \(f=\sum_n a_nq^n\) at good prime \(p\) by Amice-Vélu, Vishik, and Mazur-Tate-Teitelbaum, is in general unbounded (but \(h\)-admissible in the sense of Amice-Vélu and Vishik). R. Pollack [Duke Math. J. 118, No. 3, 523–558 (2003; Zbl 1074.11061)] proved that the function \(L_p(f,\cdot)\) at the most supersingular prime \(p\) (i.e. \(a_p= 0\)) is controlled by two Iwasawa functions (plus/minus \(p\)-adic \(L\)-functions) and by two half-logarithms.
The author uses the \(p\)-adic \(L\)-function constructed by A. Dąbrowski [Ann. Inst. Fourier 44, No. 4, 1025–1041 (1994; Zbl 0808.11035)] to obtain plus/minus \(p\)-adic \(L\)-functions for Hilbert modular forms. The construction is a generalization of Pollack’s method. She uses the constructed plus/minus \(p\)-adic \(L\)-functions to formulate the Iwasawa main conjecture for the supersingular elliptic curves defined over totally real number fields.
Remark 1. J. Park and S. Shahabi [‘Plus/minus \(p\)-adic \(L\)-functions for Hilbert modular forms’, preprint (2009)] also used the \(p\)-adic \(L\)-function constructed by the reviewer to give plus/minus \(p\)-adic \(L\)-functions for Hilbert modular forms.
Remark 2. A. Dąbrowski [C. R., Math., Acad. Sci. Paris 349, No. 7–8, 365–368 (2011; Zbl 1219.11075)] has formulated a (conjectural) generalization of Pollack’s result to \(p\)-adic \(L\)-functions attached to motives.

MSC:

11M38 Zeta and \(L\)-functions in characteristic \(p\)
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11R23 Iwasawa theory
Full Text: DOI

References:

[1] Amice, Y.; Vélu, J., Distributions p-adiques associées aux séries de Hecke, J. Arith. Bordeaux. J. Arith. Bordeaux, Astérisque, 24-25, 119-131 (1975) · Zbl 0332.14010
[2] Dąbrowski, A., p-Adic L-functions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), 44, 4, 1025-1041 (1994) · Zbl 0808.11035
[3] Darmon, H., Rational Points on Modular Elliptic Curves, CBMS Reg. Conf. Ser. Math., vol. 101 (2004), American Mathematical Society · Zbl 1057.11034
[4] Dünger, V., p-Adic interpolation of convolutions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), 47, 365-428 (1997) · Zbl 0882.11025
[5] Hida, H., On p-adic L-functions of \(GL(2) \times GL(2)\) over totally real fields, Ann. Inst. Fourier (Grenoble), 40, 2, 311-391 (1991) · Zbl 0725.11025
[6] Katz, N. M., p-Adic L-functions for CM fields, Invent. Math., 48, 199-297 (1978) · Zbl 0417.12003
[7] B.D. Kim, J. Park, B. Zhang, The main conjecture of Iwasawa theory for elliptic curves with complex multiplication over abelian extensions at supersingular primes, preprint.; B.D. Kim, J. Park, B. Zhang, The main conjecture of Iwasawa theory for elliptic curves with complex multiplication over abelian extensions at supersingular primes, preprint. · Zbl 1428.11109
[8] Kobayashi, S., Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., 152, 1-36 (2003) · Zbl 1047.11105
[9] Manin, Yu. I., Non-Archimedean integration and p-adic L-functions of Jacquet-Langlands, Uspekhi Mat. Nauk, 31, 5-54 (1976) · Zbl 0348.12016
[10] Mazur, B., Courbes elliptiques et symboles modulaires, (Séminaire Bourbaki, No. 414 (1971/1972). Séminaire Bourbaki, No. 414 (1971/1972), Lecture Notes in Math., vol. 317 (1972), Springer-Verlag) · Zbl 0276.14012
[11] Mazur, B., Rational points of abelian varieties with values in towers of number fields, Invent. Math., 18, 183-266 (1972) · Zbl 0245.14015
[12] Mazur, B.; Swinnerton-Dyer, P., Arithmetic of Weil curves, Invent. Math., 25, 1-61 (1974) · Zbl 0281.14016
[13] Panchishkin, A. A., Non-Archimedean L-Functions Associated with Siegel and Hilbert Modular Forms, Lecture Notes in Math., vol. 1471 (1991), Springer-Verlag · Zbl 0732.11026
[14] Panchishkin, A. A., Motives over totally real fields and p-adic L-functions, Ann. Inst. Fourier (Grenoble), 44, 4 (1994) · Zbl 0808.11034
[15] Pollack, R., On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J., 118, 523-558 (2003) · Zbl 1074.11061
[16] Pollack, R.; Rubin, K., The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math., 159, 447-464 (2004) · Zbl 1082.11035
[17] Rohrlich, D. E., Nonvanishing of L-functions for \(GL(2)\), Invent. Math., 97, 381-403 (1989) · Zbl 0677.10020
[18] Shimura, G., The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29, 783-804 (1978) · Zbl 0348.10015
[19] Shimura, G., The special values of zeta functions associated with Hilbert modular forms, Duke Math. J., 45, 637-679 (1978) · Zbl 0394.10015
[20] Shimura, G., Arithmeticity in the Theory of Automorphic Forms (2000), American Mathematical Society · Zbl 0967.11001
[21] Višik, M. M., Non archimedean measures associated with Dirichlet series, Mat. Sb., 99, 357-383 (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.