×

Bounded \(p\)-adic \(L\)-functions of motives at supersingular primes. (Fonctions \(L\) \(p\)-adiques bornées des motifs en une place trés supersinguliére.) (English) Zbl 1219.11075

For a prime number \(p\) let \(X_p:=\text{Hom}_{\text{cont}}({\mathbb Z}_p^\times,{\mathbb C}_p^\times)\). Let \(M\) be a pure motive over \({\mathbb Q}\) of weight \(w=w(M)\) and rank \(d=d(M)\). For the Betti realization \(H_B(M)\) there is a Hodge decomposition into \({\mathbb C}\)-vector spaces \(H_B(M) = \bigoplus_{i+j=w}H^{i,j}(M) \). Let \(h(i,j)=\dim H^{i,j}(M)\), and let \( d^\pm=d^\pm(M)\) be the \( {\mathbb Q}\)-dimension of the \(\pm\)-subspace of \(\rho_B\), the involution of \(H_B(M)\). Let \(L(M,s)=\prod_pL_p(M,p^{-s})\) be the \(L\)-function of \(M\), \(\Lambda(M,s)=L_\infty(M,s)L(M,s) \), where \(L_\infty(M,s)\) is the factor at infinity. Fix a sign \(\varepsilon_0=\pm\). The author formulates
Conjecture 1. There exists a \({\mathbb C}_p\)-meromorphic function \(L_p^{(\varepsilon_0)}:X_p\to {\mathbb C}_p\) such that
(i)
for all but a finite number of pairs \((m,\chi)\in {\mathbb Z}\times X_p^{\text{tors}}\) such that \(M(\chi)(m)\) is critical and \(\varepsilon_0=\text{sgn}((-1)^m\varepsilon(\chi))\), we have \[ L_p^{(\varepsilon_0)}(\chi x_p^m) =G(\chi)^{-d(M)^{\varepsilon_0}}A_p(M(\chi)(m),m)\frac{\Lambda(M(\chi),m)}{\Omega(\varepsilon_0,M)}, \] with \(x_p:{\mathbb Z}_p^\times\to{\mathbb C}_p^\times\) the inclusion, \(G(\chi)\) the Gauss sum, \(\Omega(\varepsilon_0,M) \) one of the modified periods of \(M\), and \(A_p(M(\chi)(m),m)\) an explicit \(p\)-factor.;
(ii)
if \(h(\frac w2, \frac w2)=0\), then \(L_p^{(\varepsilon_0)}\) is holomorphic; otherwise the function \(\prod_\xi(x(g_0)-\xi(g_0))^{n(\xi)}L_p^{(\epsilon_0)}(x)\) is holomorphic, where \(\xi\) runs over a finite set of \(p\)-adic characters, \(n(\xi)\) are positive integers, and \(g_0\in {\mathbb Z}_p^\times\);
(iii)
if the generalized Hasse invariant of \(M\) \(h_p(M)=0\), then the holomorphic function in (ii) is bounded;
(iv)
the function from (ii) is holomorphic of the type \(O(\log_p^{h_p(M)}) \) and can be represented as the Mellin transform of an \(h_p(M)\)-admissible measure.
Suppose that \(p\) is good for \(M\), and that the inverse roots of \(L_p(M,X)^{-1}\) are indexed in such a way that \(\text{ord}_p\alpha_p^{(1)}\leq \text{ord}_p\alpha_p^{(2)}\leq\ldots\leq \text{ord}_p\alpha_p^{(d)}\). Define \(L_p(M,\psi,T)\) as \(L_p^{(\varepsilon_0)}(\psi\chi_{(1+T)}\), where \(L_p^{(\epsilon_0)}\) is the \(p\)-adic \(L\)-function given by Conjecture 1, \(\psi\) is a fixed tame character such that \(\psi(-1)=\varepsilon_0\).
Conjecture 2. Assume that \(p\) is very supersingular for \(M\). Then \[ L_p(M,\psi,T)=L_p^+(M,\psi,T)\cdot\log^+_p(M,T)+ \prod_{i=1}^{d^+}\alpha_p^{(i)}\cdot L_p^-(M,\psi,T)\cdot\log^-_p(M,T), \] where \(L_p^{\pm}(M,\psi,T)\) are bounded.
Theorem 1. Conjecture 1 implies Conjecture 2.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
Full Text: DOI

References:

[1] Amice, Y.; Vélu, J., Distributions \(p\)-adiques associées aux séries de Hecke, Astérisque, 24-25, 119-131 (1975) · Zbl 0332.14010
[2] Böcherer, S.; Panchishkin, A. A., Admissible \(p\)-adic measures attached to triple products of elliptic cusp forms, Doc. Math., Extra Vol., 77-132 (2006) · Zbl 1186.11030
[3] Coates, J., On \(p\)-adic \(L\)-functions, Sém. Bourbaki. Sém. Bourbaki, Astérisque, 177-178, 33-59 (1989) · Zbl 0706.11064
[4] Coates, J.; Perrin-Riou, B., On \(p\)-adic \(L\)-functions attached to motives over \(Q\), Adv. Stud. Pure Math., 17, 23-54 (1989) · Zbl 0783.11039
[5] Dąbrowski, A., \(p\)-Adic \(L\)-functions of Hilbert modular forms, Ann. Inst. Fourier, 44, 1025-1041 (1994) · Zbl 0808.11035
[6] Dąbrowski, A.; Delbourgo, D., \(S\)-adic \(L\)-functions attached to the symmetric square of a newform, Proc. London Math. Soc., 74, 559-611 (1997) · Zbl 0871.11041
[7] Dombrowski (Dąbrowski), A., Admissible \(p\)-adic \(L\)-functions of automorphic forms, Moscow Univ. Math. Bull., 48, 2, 6-10 (1993) · Zbl 0823.11019
[8] Deligne, P., Valeurs de fonctions \(L\) et périodes dʼintégrales, Proc. Symp. Pure Math., 33, 2, 313-346 (1979) · Zbl 0449.10022
[9] Elkies, N., The existence of infinitely many supersingular primes for every elliptic curve over \(Q\), Invent. Math., 89, 561-567 (1987) · Zbl 0631.14024
[10] Lei, A.; Loeffler, D.; Zerbes, S., Wach modules and Iwasawa theory of modular forms, Asian J. Math., 14, 475-528 (2010) · Zbl 1281.11095
[11] Mazur, B.; Tate, J.; Teitelbaum, J., On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84, 1-48 (1986) · Zbl 0699.14028
[12] Vihn Quang, My, Convolutions \(p\)-adiques non-bornées de formes modulaires de Hilbert, C. R. Acad. Sci. Paris, 315, 1121-1124 (1992) · Zbl 0779.11025
[13] Panchishkin, A. A., Admissible non-archimedean standard zeta functions associated with Siegel modular forms, Proc. Symp. Pure Math., 55, 2, 251-292 (1994) · Zbl 0837.11029
[14] Panchishkin, A. A., Motives over totally real fields and \(p\)-adic \(L\)-functions, Ann. Inst. Fourier, 44, 989-1023 (1994) · Zbl 0808.11034
[15] J. Park, S. Shahabi, Plus/minus \(pL\); J. Park, S. Shahabi, Plus/minus \(pL\) · Zbl 1302.11088
[16] Perrin-Riou, B., Fonctions L p-adiques des représentations \(p\)-adiques, Astérisque, 229 (1995), 198 pp · Zbl 0845.11040
[17] Pollack, R., On the \(p\)-adic \(L\)-functions of a modular form at a supersingular prime, Duke Math. J., 118, 523-558 (2003) · Zbl 1074.11061
[18] Vishik, M. M., Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.), 99, 141, 248-260 (1976) · Zbl 0358.14014
[19] Zhang, B., On the \(p\)-adic \(L\)-function of Hilbert modular forms at supersingular primes, J. Number Theory, 131, 419-439 (2011) · Zbl 1219.11135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.