×

Exponential decay and scaling laws in noisy chaotic scattering. (English) Zbl 1217.70020

Summary: In this letter we present a numerical study of the effect of noise on a chaotic scattering problem in open Hamiltonian systems. We use the second order Heun method for stochastic differential equations in order to integrate the equations of motion of a two-dimensional flow with additive white Gaussian noise. We use as a prototype model the paradigmatic Hénon-Heiles Hamiltonian with weak dissipation which is a well-known example of a system with escapes. We study the behavior of the scattering particles in the scattering region, finding an abrupt change of the decay law from algebraic to exponential due to the effects of noise. Moreover, we find a linear scaling law between the coefficient of the exponential law and the intensity of noise. These results are of a general nature in the sense that the same behavior appears when we choose as a model a two-dimensional discrete map with uniform noise (bounded in a particular interval and zero otherwise), showing the validity of the algorithm used. We believe the results of this work be useful for a better understanding of chaotic scattering in more realistic situations, where noise is presented.

MSC:

70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
70H05 Hamilton’s equations
34K50 Stochastic functional-differential equations
60H40 White noise theory
Full Text: DOI

References:

[1] Troll, G.; Smilansky, U., Physica D, 35, 34 (1989) · Zbl 0753.58037
[2] Bleher, S.; Grebogi, C.; Ott, E., Physica D, 46, 87 (1990) · Zbl 0713.58039
[3] Ding, M.; Grebogi, C.; Ott, E.; Yorke, J. A., Phys. Rev. A, 42, 7025 (1990)
[4] Chaos Focus Issue, 3, 4 (1993), For a relatively early review of chaotic scattering, see:
[5] Motter, A. E.; Lai, Y.-C., Phys. Rev. E, 65, 015205 (2002)
[6] Seoane, J. M.; Aguirre, J.; Sanjuán, M. A.F.; Lai, Y. C., Chaos, 16, 023101 (2006) · Zbl 1146.37362
[7] Grebogi, C.; Ott, E.; Yorke, J. A., Physica D, 7, 181 (1983)
[8] Tél, T., (Hao, B.-l., STATPHYS 19 (1996), World Scientific: World Scientific Singapore)
[9] Motter, A. E.; Lai, Y. C.; Grebogi, C., Phys. Rev. E, 68, 056307 (2003)
[10] Do, Y.; Lai, Y. C., Phys. Rev. Lett., 91, 224101 (2003)
[11] Do, Y.; Lai, Y. C., Phys. Rev. E, 70, 036203 (2004)
[12] Mills, P., Commun. Nonlinear Sci. Numer. Simul., 11, 899 (2005)
[13] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes in C: The Art of Scientific Computing (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0845.65001
[14] Burden, R. L.; Faires, J. D., Numerical Analysis (1997), ITP: ITP USA
[15] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1999), Springer: Springer New York · Zbl 0701.60054
[16] Hénon, M.; Heiles, C., Astron. J., 69, 73 (1964)
[17] Aguirre, J.; Vallejo, J. C.; Sanjuán, M. A.F., Phys. Rev. E, 64, 066208 (2001)
[18] Poon, L.; Campos, J.; Ott, E.; Grebogi, C., Int. J. Bifur. Chaos Appl. Sci. Eng., 6, 251 (1996) · Zbl 0870.58069
[19] Kennedy, J.; Yorke, J. A., Physica D, 51, 213 (1991) · Zbl 0746.58054
[20] Kennedy, J.; Sanjuán, M. A.F.; Yorke, J. A.; Grebogi, C., Topol. Appl., 94, 207 (1999) · Zbl 0940.37016
[21] Nusse, H. E.; Yorke, J. A., Phys. Rev. Lett., 84, 626 (2000)
[22] Aguirre, J.; Sanjuán, M. A.F., Physica D, 171, 41 (2002) · Zbl 1008.37011
[23] Sweet, D.; Ott, E.; Yorke, J. A., Nature, 399, 315 (1999) · Zbl 1369.37049
[24] Moser, J., Stable and Random Motions in Dynamical Systems (1973), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0271.70009
[25] Lai, Y.-C.; Ding, M.; Grebogi, C.; Blümel, R., Phys. Rev. A, 46, 4661 (1992)
[26] Contopoulos, G., Astron. Astrophys., 231, 41 (1990)
[27] Higham, D. J., SIAM Rev., 43, 525 (2001) · Zbl 0979.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.