×

A simple model for chaotic scattering. I: Classical theory. (English) Zbl 0753.58037

Summary: We study a simple physical problem which displays classical chaotic (irregular) scattering. The dynamics is given by a mapping which has much in common with the “standard” map. Through the study of the dynamics we show that irregular scattering is a physical realization of transient chaos in a Hamiltonian system. We discuss the mechanism responsible for transient chaos in this system and derive analytical expressions for the various parameters which are needed to characterize it.

MSC:

58Z05 Applications of global analysis to the sciences
37A30 Ergodic theorems, spectral theory, Markov operators
34L25 Scattering theory, inverse scattering involving ordinary differential operators

Citations:

Zbl 0753.58038
Full Text: DOI

References:

[1] Silnikov, K., Dokl. Akad. Nauk. USSR, 133, No. 2, 303 (1960)
[2] Alekseev, V. M., Math. USSR Sbornik, 7, 1 (1969)
[3] Moser, J., Stable and Random Motions in Dynamical Systems (1973), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0271.70009
[4] Physica D (1988), to appear
[5] Vázquez, E. C.; Jeffays, W. H.; Sivaramakrishnan, A., Physica D, 29, 84 (1987)
[6] Grebogi, C.; Ott, E.; Yorke, J. A., Physica D, 7, 181 (1983)
[7] Kantz, H.; Grassberger, P., Physica D, 17, 75 (1985) · Zbl 0597.58017
[8] Grebogi, C.; Ott, E.; Yorke, J. A., Phys. Rev. Lett., 57, 1284 (1986)
[9] Grebogi, C.; McDonald, S. W.; Ott, E.; Yorke, J. A., Phys. Lett. A, 99, 415 (1983)
[10] McDonald, S. W.; Grebogi, C.; Ott, E.; Yorke, J. A., Physica D, 17, 125 (1985) · Zbl 0588.58033
[11] Eckhardt, B., Physica D, 33, 89 (1988) · Zbl 0669.58050
[12] De Vogelaereand, R.; Bondart, M., Contribution to the theory of fast reaction rates, J. Chem. Phys., 23, 1236-1244 (1955)
[13] Rankin, C. C.; Miller, W. H., Classical \(S\) matrix for linear reactive collisions of \(H+Cl_2\), J. Chem. Phys., 55, 3150-3156 (1971)
[14] Gottdiener, I., The multiple-collision region in non-reactive atom-diatom collisions, Mol. Phys., 29, 1309-1316 (1973)
[15] McGehee, R., Triple collision in the collinear three-body problem, Inventiones Math., 27, 191-227 (1974) · Zbl 0297.70011
[16] Agmon, N., Fine structure in the dependence of final conditions on initial conditions in classical collinear \(H_2+H\) dynamics, J. Chem. Phys., 76, 1300-1316 (1982)
[17] Pollak, E.; Pechukas, P., Transition states, trapped trajectories and classical bond states embedded in the continuum, J. Chem. Phys., 69, 1218-1226 (1978)
[18] Pollak, E.; Child, M. S., Classical mechanism of a collinear exchange reaction, J. Chem. Phys., 73, 4373-4380 (1980)
[19] Pechukas, P., Transition state theory, Ann. Rev. Phys. Chem., 32, 1569-1577 (1981)
[20] Pollak, E., Periodic Orbits and the Theory of Reactive Scattering, (Baer, M., Theory of Chemical Reaction Dynamics, vol. III (1987), CRC Publ: CRC Publ Boca Raton, FL)
[21] Eckhardt, B.; Jung, C., Regular and irregular potential scattering, J. Phys. A:Math. Gen., 19, L829-L833 (1986) · Zbl 0618.34020
[22] Petit, J. M.; Henon, M., Satellite encounters, Icarus, 66, 536-555 (1986)
[23] Spirig, F.; Waldvogel, J., The three-body problem with two small masses: A singular perturbation approach to the problem of Saturns coorbiting satellites, (Szebehely, B., Stability of the Solar System and its Minor Natural and Artificial Bodies (1985), Reidel: Reidel Dordrecht)
[24] Aref, H., Integrable, chaotic and turbulent vortex motion in two dimensional flows, Ann. Rev. Fluid Mech., 15, 345-389 (1983) · Zbl 0562.76029
[25] Eckhardt, B.; Aref, H., Integrable and chaotic motion of four vortices II: Collision dynamics of vortex pairs, Phil. Trans. Roy. Soc. London (1988), to appear · Zbl 0661.76019
[26] Noid, D. W.; Gray, S. K.; Rice, S. A., Fractal behaviour in classical collisional energy transfer, J. Chem. Phys., 84, 2649-2652 (1986)
[27] Eckhardt, B., Irregular scattering of vortex pairs, Europhys. Lett. (1988), to appear
[28] Manakov, S. V.; Schur, L. N., Stochastic aspect of two-particle scattering, Sov. Phys. JETP, 37, 54-58 (1983)
[29] (Model studies of one-dimensional double well and anharmonic potentials. Model studies of one-dimensional double well and anharmonic potentials, Theory, Chem. Phys. Lett., 84 (1981)), 144-150
[30] Jung, C., Poincaré map for scattering states, J. Phys. A:Math. Gen., 19, 1345-1353 (1986) · Zbl 0619.58025
[31] Eckhardt, B., Fractal properties of scattering singularities, J. Phys. A: Math. Gen., 20, 5971-5979 (1987)
[32] Jung, C.; Scholz, H. J., Cantor set structures in the singularities of classical potential scattering, J. Phys. A: Math. Gen., 20, 3607-3617 (1987) · Zbl 0644.58036
[33] Jung, C., Can the integrability for Hamiltonian systems be decided by the knowledge of scattering data?, J. Phys. A: Math. Gen., 20, 1787-1791 (1987)
[34] T. Tél, private communication (1988).; T. Tél, private communication (1988).
[35] Gutzwiller, M. C., Physica D, 7, 341-355 (1983)
[36] Blümel, R.; Smilansky, U., Phys. Rev. Lett., 60, 477 (1988)
[37] Ziman, J. M., Principles of the Theory of Solids (1972), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0121.44801
[38] Goldstein, H., Classical Mechanics (1957), Addison-Wesley: Addison-Wesley Reading, MA
[39] Devancy, R. L., An Introduction to Chaotical Dynamical Systems (1986), Benjamin-Cummings: Benjamin-Cummings New York · Zbl 0632.58005
[40] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems and bifurcation of vector fields, (Appl. Math. Sci., 42 (1986), Springer: Springer New York) · Zbl 0515.34001
[41] Grassberger, P., Information flow and maximum entropy measures for 1-D maps, Physics D, 14, 365-373 (1985) · Zbl 0584.94008
[42] Firth, W. J., Phys. Rev. Lett., 61, 329-332 (1988), in the context of optical memory
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.