×

An extension to a theorem of Jörgens, Calabi, and Pogorelov. (English) Zbl 1236.35041

Summary: We give some extensions to a theorem of K. Jörgens (\(n=2\)) [Math. Ann. 127, 130–134 (1954; Zbl 0055.08404)], E. Calabi (\(n\leq 5\)) [Mich. Math. J. 5, 105–126 (1958; Zbl 0113.30104)], and A. V. Pogorelov (\(n\geq 2\)) [Geom. Dedicata 1, 33–46 (1972; Zbl 0251.53005)]. The theorem asserts that any classical convex solution to \(\det(D^2u) = \) in \(\mathbb R^n\) must be a quadratic polynomial. One of our extensions asserts that for any positive Hölder continuous function \(f\) in \(\mathbb R^n\) which is 1-periodic in each variable, any convex solution of \(\det(D^2u) = f\) in \(\mathbb R^n\) must be the sum of a quadratic polynomial and a function which is 1-periodic in each variable.

MSC:

35J60 Nonlinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Aubin, Équations de Monge-Ampeèere réelles, J Funct Anal 41 (3) pp 354– (1981) · Zbl 0465.35001 · doi:10.1016/0022-1236(81)90081-1
[2] Caffarelli, Interior W2, p estimates for solutions of the Monge-Ampeèere equation, Ann of Math (2) 131 (1) pp 135– (1990)
[3] Caffarelli, A localization property of viscosity solutions to the Monge-Ampeèere equation and their strict convexity, Ann of Math (2) 131 (1) pp 129– (1990) · Zbl 0704.35045
[4] Caffarelli , L. A. Topics in PDEs: The Monge-Ampeèere equation 1995
[5] Caffarelli, American Mathematical Society Colloquium Publications 43, in: Fully nonlinear elliptic equations (1995) · Zbl 0834.35002
[6] Caffarelli, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampeèere equation, Comm Pure Appl Math 37 (3) pp 369– (1984)
[7] Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math J 5 pp 105– (1958) · Zbl 0113.30104 · doi:10.1307/mmj/1028998055
[8] Cheng, On the regularity of the Monge-Ampeèere equation det(2u/xixj) = F(x, u), Comm Pure Appl Math 30 (1) pp 41– (1977)
[9] Cheng, Complete affine hypersurfaces. I. The completeness of affine metrics, Comm Pure Appl Math 39 (6) pp 839– (1986) · Zbl 0623.53002
[10] Chou, Entire solutions of the Monge-Ampeèere equation, Comm Pure Appl Math 49 (5) pp 529– (1996)
[11] de Guzmán, Lecture Notes in Mathematics 481, in: Differentiation of integrals in Rn (1975)
[12] Delanoë, Partial decay on simple manifolds, Ann Global Anal Geom 10 (1) pp 3– (1992) · Zbl 0714.35027
[13] Ferrer, An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math Z 230 (3) pp 471– (1999) · Zbl 0967.53009
[14] Ferrer, The space of parabolic affine spheres with fixed compact boundary, Monatsh Math 130 (1) pp 19– (2000) · Zbl 0956.53011 · doi:10.1007/s006050050084
[15] Gilbarg, On isolated singularities of solutions of second order elliptic differential equations, J Analyse Math 4 pp 309– (1955)
[16] Gilbarg, Grundlehren der Mathematischen Wissenschaften 224, in: Elliptic partial differential equations of second order (1983)
[17] Jörgens, Über die Lösungen der Differentialgleichung rt - s2 = 1, Math Ann 127 pp 130– (1954)
[18] Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1) pp 33– (1972) · Zbl 0251.53005 · doi:10.1007/BF00147379
[19] Trudinger, The Bernstein problem for affine maximal hypersurfaces, Invent Math 140 (2) pp 399– (2000) · Zbl 0978.53021 · doi:10.1007/s002220000059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.