×

Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks. (English) Zbl 1214.11116

The author begins the first half of the paper by defining the symmetrized \(k\)th rank moment, \[ \eta_k(n) = \sum_{m \in \mathbb{Z}} \begin{pmatrix} m + \lfloor \frac{k-1}{2} \rfloor \\ k \end{pmatrix} N(m,n), \] where \(N(m,n)\) is the number of partitions of \(n\) with rank \(m\), and computing its generating function, \[ \sum_{n \geq 1} \eta_{2v}(n)q^n = \prod_{n \geq 1} \frac{1}{1-q^n} \sum_{n \in \mathbb{Z} \backslash \{0\}} \frac{(-1)^{n-1}q^{n(3n-1)/2 + vn}}{(1-q^n)^{2v}}. \] (Odd rank moments are identically \(0\).)
He then defines and computes the generating function for \(k\)-marked Durfee symbols arising from partitions of \(n\). If \(\mathcal{D}_k(n)\) denotes the number of such symbols, then \(\mathcal{D}_1(n) = p(n)\), the number of partitions of \(n\), and for \(k \geq 1\) we have \(\mathcal{D}_{k+1}(n) = \eta_{2k}(n)\).
Next the author discusses the notions of rank and conjugation for \(k\)-marked Durfee symbols. He defines the full rank, which generalizes Dyson’s rank of a partition and provides combinatorial interpretations of certain congruences. For instance, one has \(\mathcal{D}_2(n) \equiv 0 \pmod{5}\) if \(n \equiv \pm 1 \pmod{5}\), which follows from the identity \(NF_2(r,5,5n+a) = \frac{1}{5}\mathcal{D}_2(5n+a)\), where \(a=1\) or \(4\) and \(NF_2(r,t,n)\) is the number of \(2\)-marked Durfee symbols of \(n\) whose full rank is congruent to \(r\) modulo \(t\).
In the second half of the paper the author considers \(k\)-marked odd Durfee symbols and moments of odd ranks. When \(k=1\) the generating function for odd Durfee symbols is the third order mock theta function \(\omega(q)\).
The paper ends with a discussion of multiple series representations of mock theta functions and a list of suggested research problems.

MSC:

11P83 Partitions; congruences and congruential restrictions
05A17 Combinatorial aspects of partitions of integers
05A19 Combinatorial identities, bijective combinatorics
11P81 Elementary theory of partitions
11F37 Forms of half-integer weight; nonholomorphic modular forms
Full Text: DOI

References:

[1] Agarwal, A. K.; Andrews, G. E., Rogers-Ramanujan identities for partitions with “N copies of N”, J. Comb. Theory, Ser. A,, 45, 40-49 (1987) · Zbl 0618.05003 · doi:10.1016/0097-3165(87)90045-8
[2] Ahlgren, S.; Ono, K., Addition and counting: The arithmetic of partitions, Notices Am. Math. Soc., 48, 978-984 (2001) · Zbl 1024.11063
[3] Alladi, K.: The method of weighted words and applications to partitions. In: David, S. (ed.) Number Theory, pp. 1-36. Cambridge University Press, Cambridge (1995) · Zbl 0829.11051
[4] Alladi, K.; Andrews, G. E.; Berkovich, A., A new four parameter q-series identity and its partition implications, Invent. Math., 153, 231-260 (2003) · Zbl 1097.05006 · doi:10.1007/s00222-003-0285-8
[5] Andrews, G.E.: Problems and prospects for basic hypergeometric functions. In: Askey, R. (ed.) Theory and Appl. of Special Functions, pp. 191-224. Academic Press, New York (1975) · Zbl 0342.33001
[6] Andrews, G.E.: The theory of partitions. In: Rota, G.-C. (ed.) Encycl. of Math. and Its Appl. Addison-Wesley, Reading, (1976) (Reissued: Cambridge University Press, New York, 1998) · Zbl 0371.10001
[7] Andrews, G. E.; Crippa, D.; Simon, K., q-Series arising from the study of random graphs, SIAM J. Discrete Math., 10, 41-56 (1997) · Zbl 0871.05049 · doi:10.1137/S0895480194262497
[8] Andrews, G. E.; Freitas, P., Extension of Abel’s Lemma with q-series implications, Ramanujan J., 10, 137-152 (2005) · Zbl 1081.33029 · doi:10.1007/s11139-005-4844-z
[9] Andrews, G. E.; Garvan, F., Dyson’s crank of a partition, Bull. Am. Math. Soc., 18, 167-171 (1988) · Zbl 0646.10008 · doi:10.1090/S0273-0979-1988-15637-6
[10] Atkin, A. O.L.; Garvan, F., Relations between the ranks and cranks of partitions, Ramanujan J., 7, 343-366 (2003) · Zbl 1039.11069 · doi:10.1023/A:1026219901284
[11] Atkin, A. O.L.; Swinnerton-Dyer, H. P.F., Some properties of partitions, Proc. Lond. Math. Soc., III Ser., 4, 84-106 (1954) · Zbl 0055.03805 · doi:10.1112/plms/s3-4.1.84
[12] Bringmann, K.: Asymptotics for rank partition functions. (to appear) · Zbl 1189.11049
[13] Bringmann, K.; Ono, K., The f(q) mock theta function conjecture and partition ranks, Invent. Math., 165, 243-266 (2006) · Zbl 1135.11057 · doi:10.1007/s00222-005-0493-5
[14] Bringmann, K., Ono, K.: Dyson’s ranks and Maass forms. Submitted · Zbl 1277.11096
[15] Dilcher, K., Some q-series identities related to divisor functions, Discrete Math., 145, 98-110 (1995) · Zbl 0834.05005 · doi:10.1016/0012-365X(95)00092-B
[16] Dyson, F.: Some guesses in the theory of partitions. Eureka 8, 10-15 (1944) (Reprinted: Selected Papers, Am. Math. Soc., Providence, pp. 51-56 (1996))
[17] Fine, N. J., Basic Hypergeometric Series and Applications (1988), Providence: Am. Math. Soc., Providence · Zbl 0647.05004
[18] Garthwaite, S.: The coefficients of the ω(q) mock theta function. Proc. Am. Math. Soc. (to appear) · Zbl 1220.11061
[19] Garvan, F. G., New combinatorial interpretations of Ramanujan’s partition congruences, Trans. Am. Math. Soc., 305, 47-77 (1988) · Zbl 0641.10009 · doi:10.2307/2001040
[20] Garvan, F. G., Generalizations of Dyson’s rank and non-Rogers-Ramanujan partitions, Manuscr. Math., 84, 343-359 (1994) · Zbl 0819.11043 · doi:10.1007/BF02567461
[21] Gasper, G.; Rahman, M., Basic Hypergeometric Series (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0695.33001
[22] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (1979), Oxford: Clarendon Press, Oxford · Zbl 0423.10001
[23] Kluyver, J.C.: Vraagstuk XXXVII. (Solution by van Veen, S.C.). Wiskundige Opgaven, 92-93 (1919) · JFM 47.0212.07
[24] MacMahon, P.A.: The theory of modular partitions. Proc. Camb. Phil. Soc. 21, 197-204 (1923) (Reprinted: Coll. Papers, vol. 1, M.I.T. Press, Cambridge, pp. 1090-1097 (1978))
[25] Mahlburg, K., Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Nat. Acad. Sci., 102, 15373-15376 (2005) · Zbl 1155.11350 · doi:10.1073/pnas.0506702102
[26] Ono, K., Distribution of the partition function modulo m, Ann. Math., 151, 293-307 (2000) · Zbl 0984.11050 · doi:10.2307/121118
[27] Ono, K.: Arithmetic of the partition function. In: Bustoz, J., Suslov, S. (eds.) Proc. NATO Adv. Study Inst. on Special Functions, Special Functions, pp. 243-253. Kluwer, New York (2000) · Zbl 1065.11081
[28] Ramanujan, S., The Lost Notebook and Other Unpublished Papers. Intro. by G.E. Andrews (1997), New Delhi: Narosa, New Delhi
[29] Sylvester, J.J.: Note on the paper of Mr.Durfee. Johns Hopkins Univ. Circulars 2, pp. 23, 24; 42, 43 (1883) (Reprinted: Coll. Papers, vol. 3, pp. 660-662, Chelsea, New York (1973))
[30] Sylvester, J.J.: A constructive theory of partitions .... Am. J. Math. 5, 251-330 (1882), 6, 334-336 (1884) (Reprinted: Coll. Papers, vol. 4, pp. 1-83, Chelsea, New York (1973))
[31] Uchimura, K., An identity for the divisor generating function arising from sorting theory, J. Comb. Theory, Ser. A, 31, 131-135 (1981) · Zbl 0473.05006 · doi:10.1016/0097-3165(81)90009-1
[32] Watson, G. N., The final problem, J. Lond. Math. Soc., 11, 55-80 (1936) · Zbl 0013.11502 · doi:10.1112/jlms/s1-11.1.55
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.