×

Extension of Abel’s Lemma with \(q\)-series implications. (English) Zbl 1081.33029

In the first part of this paper, the authors look at applications of the following lemma: Let \[ f(z) = \sum_{n \geq 0} \alpha_nz^n \] be analytic for \(| z| < 1\), and assume that for some positive integer \(p\) and a fixed complex number \(\alpha\) we have that \[ \sum_{n \geq 0} (n+1,p)(\alpha_{n+p} - \alpha_{n+p-1}) \] converges, and \[ \lim_{n \to \infty} (n+1,p)(\alpha_{n+p} - \alpha) = 0. \] Then \[ \frac{1}{p} \lim_{z \to 1^{-}} \left(\frac{d^p}{dz^p}[(1-z)f(z)] \right) = \sum_{n \geq 0} (n+1,p-1)(\alpha - \alpha_{n+p-1}). \] The authors’ notation \((a,n)\) is for the product \(a(a+1) \cdots (a+n-1)\). For instance, the lemma is applied to the Heine transformation, and the result is the following, where the standard \(q\)-series notation is employed: For each integer \(p \geq 1\), \[ \sum_{n \geq 0} (n+1,p-1)\left(\frac{(b)_{\infty}}{(c)_{\infty}} - \frac{(b)_{n+p-1}}{(c)_{n+p-1}} \right) = -(p-1)! \frac{(b)_{\infty}}{(c)_{\infty}} \sum_{n \geq 1} \frac{(c/b)_n(bq^{p-1})^n}{(q)_n(1-q^n)^p}. \] In the second part of the paper, the authors look at applications of a second lemma:
Let \(f\) and \(g\) be two functions defined by the series \[ f(x) = \sum_{n \geq 0}f_nx^n \] and \[ g(x) = \sum_{n \geq 0}g_nx^n, \] and assume that the first series converges absolutely and that the series \[ \sum_{n \geq 0}\sum_{k \geq 0} | g_nf_kq^{kn}x^k| \] converges. Then \[ \sum_{n \geq 0}f_ng(q^n)x^n = \sum_{n \geq 0} g_nf(q^nx). \] These applications are to identities of which the following is a typical example: \[ \sum_{n \geq 0} \left( \frac{(q)_{\infty}}{(q)_n} - \frac{(q)_{\infty}^2}{(q)^2_n} \right) = \sum_{n \geq 1} \frac{(-1)^{n+1}q^{n(n+1)/2}}{1-q^n}. \]

MSC:

33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
05A30 \(q\)-calculus and related topics
Full Text: DOI

References:

[1] G.E. Andrews, ”Ramanujan’s ’lost’ notebook, V: Euler’s partition identity,” Adv. Math. 61 (1986), 156–164. · Zbl 0601.10007 · doi:10.1016/0001-8708(86)90072-1
[2] G.E. Andrews, ”Stacked lattice boxes,” Ann. Comb. 3 (1999), 115–130. · Zbl 0929.00007 · doi:10.1007/BF01608779
[3] G.E. Andrews, ”Some debts I owe, from The Andrews Festschrift,” (D. Foata and G.-N. Han, eds.), Springer, Berlin, 2001, 1–16.
[4] G.E. Andrews, D. Crippa, and K. Simon, ”q-series arising from the study of random graphs,” SIAM J. Discrete Math. 10 (1997), 41–56. · Zbl 0871.05049
[5] G.E. Andrews, J. Jiménez-Urroz, and K. Ono, ”q-series identities and values of certain L-functions,” Duke Math. J. 108 (2001), 395–419. · Zbl 1005.11048
[6] G. Coogan, ”More generating functions for L-function values,” Contemp. Math. 291 (2001), 109–114. · Zbl 1147.11322
[7] G. Coogan and K. Ono, ”A q-series identity and the arithmetic of Hurwitz zeta functions,” Proc. Amer. Math. Soc. (to appear). · Zbl 1082.11011
[8] N.J. Fine, ”Basic Hypergeometric series and applications,” Math. Surveys Monogr., Amer. Math. Soc., Providence, 27, 1988. · Zbl 0647.05004
[9] J. Lovejoy and K. Ono, ”Hypergeometric generating functions for values of Dirichlet and other L-functions,” Proc. Nat. Acad. Sci. U.S.A. (to appear). · Zbl 1070.33016
[10] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. · Zbl 0639.01023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.