×

An analysis of near-marginal, mildly penetrative convection with heat flux prescribed on the boundaries. (English) Zbl 0604.76031

The model penetrative-convection problem of ice-water convection is considered. Analytical progress is made through the remarkable simplification that horizontally long convection cells are preferred when the heat flux is fixed on the boundaries [C. J. Chapman and M. R. E. Proctor, ibid. 101, 759-782 (1980; Zbl 0507.76049)]. However, a linear analysis shows that long horizontal scales are preferred only when the convection is mildly penetrative (i.e. the overlying layer of stable fluid is not deep). A straightforward nonlinear asymptotic analysis of the convection only provides the relatively uninteresting information that the convection is subcritical. Using the technique of reconstitution [the author, SIAM J. Math. Anal. 16, 1243-1258 (1985; Zbl 0582.76060)] to provide higher-order corrections to the asymptotic theory, flow properties at larger amplitudes are calculated and predictions about the extent of the subcriticality are made.

MSC:

76E15 Absolute and convective instability and stability in hydrodynamic stability
76T99 Multiphase and multicomponent flows
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Roberts, SIAM J. Math. Anal. 113 pp 469– (1985)
[2] Roberts, Woods Hole Oceanogr. Inst. Rep. 113 pp 469– (1981)
[3] Depassier, Geophys. Astrophys. Fluid Dyn. 21 pp 167– (1982)
[4] Denton, J. Fluid Mech. 113 pp 1– (1981)
[5] DOI: 10.1017/S0022112069000942 · doi:10.1017/S0022112069000942
[6] Davis, Proc. R. Soc. Lond. 310 pp 341– (1969)
[7] Cushman-Roisin, Geophys. Astrophys. Fluid Dyn. 19 pp 61– (1982)
[8] DOI: 10.1017/S0022112080001917 · Zbl 0507.76049 · doi:10.1017/S0022112080001917
[9] DOI: 10.1016/0012-821X(80)90217-4 · doi:10.1016/0012-821X(80)90217-4
[10] DOI: 10.1175/1520-0469(1974)031 2.0.CO;2 · doi:10.1175/1520-0469(1974)031 2.0.CO;2
[11] DOI: 10.1017/S002211207500167X · doi:10.1017/S002211207500167X
[12] DOI: 10.1017/S0022112070000319 · doi:10.1017/S0022112070000319
[13] DOI: 10.1175/1520-0469(1967)024 2.0.CO;2 · doi:10.1175/1520-0469(1967)024 2.0.CO;2
[14] Proctor, J. Fluid Mech. 113 pp 469– (1981)
[15] DOI: 10.1017/S0022112075002662 · Zbl 0332.76025 · doi:10.1017/S0022112075002662
[16] Myrup, Weather 25 pp 150– (1970) · doi:10.1002/j.1477-8696.1970.tb05220.x
[17] DOI: 10.1017/S0022112068000194 · doi:10.1017/S0022112068000194
[18] DOI: 10.1017/S0022112073000868 · doi:10.1017/S0022112073000868
[19] Mollendorff, J. Fluid Mech. 113 pp 269– (1981)
[20] DOI: 10.1175/1520-0469(1975)032 2.0.CO;2 · doi:10.1175/1520-0469(1975)032 2.0.CO;2
[21] DOI: 10.1137/0503005 · Zbl 0243.34101 · doi:10.1137/0503005
[22] DOI: 10.1256/smsqj.43010 · doi:10.1256/smsqj.43010
[23] DOI: 10.1017/S0022112081000955__S0022112081000955 · doi:10.1017/S0022112081000955__S0022112081000955
[24] DOI: 10.1086/147538 · Zbl 0123.46103 · doi:10.1086/147538
[25] Townsend, Q. J. R. Met. Soc. 90 pp 248– (1964)
[26] Taylor, Proc. R. Soc. Lond. 219 pp 186– (1953)
[27] DOI: 10.1016/0017-9310(71)90121-9 · doi:10.1016/0017-9310(71)90121-9
[28] Spiegel, Woods Hole Oceanogr. Inst. Rep. 113 pp 469– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.