×

Stochastic hybrid systems for studying biochemical processes. (English) Zbl 1211.37117

Summary: Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.

MSC:

37N25 Dynamical systems in biology
92C40 Biochemistry, molecular biology
34F05 Ordinary differential equations and systems with randomness
92E20 Classical flows, reactions, etc. in chemistry

Software:

StochDynTools
Full Text: DOI

References:

[1] Alon, Nature reviews. Genetics 8 (6) pp 450– (2007) · doi:10.1038/nrg2102
[2] Bar-Even, Nature genetics 38 (6) pp 636– (2006) · doi:10.1038/ng1807
[3] Becskei, Nature; Physical Science (London) 405 (6786) pp 590– (2000) · doi:10.1038/35014651
[4] Bioinformatics 24 (23) pp 2748– (2008) · doi:10.1093/bioinformatics/btn527
[5] IEEE TRANS AUTOM CONTROL 53 pp 38– (2008)
[6] Systematic Biology 1 pp 170– (2004)
[7] Gillespie 3 (1) pp 52– (2009) · doi:10.1049/iet-syb:20070031
[8] J COMPUT PHYS 22 pp 403– (1976)
[9] The Journal of Chemical Physics 115 pp 1716– (2001)
[10] Gomez-Uribe, The Journal of Chemical Physics 126 (2) pp 024109– (2007) · doi:10.1063/1.2408422
[11] Biophysical Journal 92 (7) pp 2350– (2007) · doi:10.1529/biophysj.106.093781
[12] Bioinformatics 22 (22) pp 2782– (2006) · Zbl 1170.92335 · doi:10.1093/bioinformatics/btl465
[13] NONLINEAR ANAL 62 pp 1353– (2005)
[14] INT J ROBUST NONLINEAR CONTROL 15 pp 669– (2005)
[15] IEEE TRANS AUTOM CONTROL 53 pp 51– (2008)
[16] Lee, The Journal of Chemical Physics 130 (13) pp 134107– (2009) · doi:10.1063/1.3103264
[17] Losick, Science 320 (5872) pp 65– (2008) · doi:10.1126/science.1147888
[18] PNAS 105 (34) pp 12295– (2008) · doi:10.1073/pnas.0805549105
[19] 4 pp 413– (1967)
[20] THEORET POPUL BIOL 64 pp 233– (2003)
[21] Newman, Nature; Physical Science (London) 441 (7095) pp 840– (2006) · doi:10.1038/nature04785
[22] Novick, PNAS 43 (7) pp 553– (1957) · doi:10.1073/pnas.43.7.553
[23] Ozbudak, Nature genetics 31 (1) pp 69– (2002) · doi:10.1038/ng869
[24] Raj, Cell 135 (2) pp 216– (2008) · doi:10.1016/j.cell.2008.09.050
[25] Riley 3 (3) pp 137– (2009) · doi:10.1049/iet-syb.2008.0101
[26] Salis, The Journal of Chemical Physics 122 (5) pp 54103– (2005) · doi:10.1063/1.1835951
[27] Singh, Bulletin of mathematical biology 69 (6) pp 1909– (2007) · Zbl 1298.92088 · doi:10.1007/s11538-007-9198-9
[28] Singh, Biophysical Journal 96 (10) pp 4013– (2009) · doi:10.1016/j.bpj.2009.02.064
[29] Singh 3 (5) pp 368– (2009)
[30] Singh, Current opinion in microbiology 12 (4) pp 460– (2009) · doi:10.1016/j.mib.2009.06.016
[31] Stekel 2 pp 6– (2008) · doi:10.1186/1752-0509-2-6
[32] PHYS D 237 pp 2616– (2008)
[33] Zeiser, Bulletin of mathematical biology 71 (4) pp 1006– (2009) · Zbl 1163.92028 · doi:10.1007/s11538-008-9391-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.