The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more “fast” reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the “Next Reaction” variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.

1.
M. B.
Elowitz
,
A. J.
Levine
,
E. D.
Siggia
, and
P. S.
Swain
,
Science
297
,
1183
(
2002
).
2.
H. Salis and Y. Kaznessis, Comput. Chem. Eng. (in press).
3.
D. M.
Wolf
and
A. P.
Arkin
,
Current Opin. Microbiol.
6
,
125
(
2003
).
4.
M. L.
Simpson
,
C. D.
Cox
, and
G. S.
Sayler
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
4551
(
2003
).
5.
N.
Rosenfeld
and
U.
Alon
,
J. Mol. Biol.
329
,
645
(
2003
).
6.
C. D.
Cox
,
G. D.
Peterson
,
M. S.
Allen
,
J. M.
Lancaster
,
J. M.
McCollum
,
D.
Austin
,
L.
Yan
,
G. S.
Sayler
, and
M. L.
Simpsons
,
OMICS
7
,
317
(
2003
).
7.
R.
Bundschuh
,
F.
Hayot
, and
C.
Jayaprakash
,
J. Theor. Biol.
220
,
261
(
2003
).
8.
M. R.
Atkinson
,
M. A.
Savageau
,
J. T.
Myers
, and
A. J.
Ninfa
,
Cell
113
,
597
(
2003
).
9.
Cao
,
Y. H.
Li
, and
L. R.
Petzold
,
J. Chem. Phys.
121
,
4059
(
2004
).
10.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
11.
D. T.
Gillespie
,
J. Phys. Chem. A
81
,
2340
(
1977
).
12.
M. A.
Gibson
and
J.
Bruck
,
J. Phys. Chem.
104
,
1876
(
2000
).
13.
C. V.
Rao
and
A. P.
Arkin
,
J. Chem. Phys.
118
,
4999
(
2003
).
14.
D. T.
Gillespie
,
J. Chem. Phys.
115
,
1716
(
2001
).
15.
D. T.
Gillespie
and
L. R.
Petzold
,
J. Chem. Phys.
119
,
8229
(
2003
).
16.
D. T.
Gillespie
,
J. Chem. Phys.
113
,
297
(
2000
).
17.
E. L.
Haseltine
and
J. B.
Rawlings
,
J. Chem. Phys.
117
,
6959
(
2002
).
18.
J.
Puchalka
and
A. M.
Kierzek
,
Biophys. J.
86
,
1357
(
2004
).
19.
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 2nd ed. (Springer-Verlag, Berlin, 1990).
20.
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 1st ed. (Springer-Verlag, Berlin, 1992).
21.
K.
Burrage
and
P. M.
Burrage
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
38
,
1626
(
2000
).
22.
G. N.
Milstein
,
E.
Platen
, and
H.
Shurz
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
35
(
3
),
1010
(
1998
).
23.
T.
Tian
and
K.
Burrage
,
Appl. Numer. Math.
38
,
167
(
2001
).
24.
J. G.
Gaines
and
T. J.
Lyons
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
57
,
1455
(
1997
).
25.
P. M.
Burrage
and
K.
Burrage
,
SIAM J. Sci. Comput. (USA)
24
,
848
(
2002
).
26.
J. J.
Tyson
,
C. I.
Hong
,
C. D.
Thron
, and
B.
Novak
,
Biophys. J.
77
,
2411
(
1999
).
27.
P.
Smolen
,
D. A.
Baxter
, and
J. H.
Byrne
,
Biophys. J.
83
,
2349
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.