×

Uniqueness of extremal Kähler metrics for an integral Kähler class. (English) Zbl 1058.32017

Let \(M\) be a compact, connected Kähler manifold and \([\omega]\) a fixed integral Kähler class in \(H^{1,1}(M)\). Let also \(H \subset Aut(M)\) be the maximal connected linear algebraic subgroup of the automorphism group of \(M\).
The author proves that if there exists an extremal metric \(\omega_o \in [\omega]\), then such a metric is unique up to a transformation in \(H\).
The proof is based on a recent result of the author in the paper [Osaka J. Math 41, No. 2, 463–472 (2004; Zbl 1070.58012)], where it was shown that any extremal metric in \([\omega]\) can be approximated in \({\mathcal C}^k\)-norm, for any given \(k\), by a suitable sequence of so-called “\(T\)-critical metrics”. The non existence of two distinct \(H\)-orbits of extremal metrics in \([\omega]\) is obtained from a non-trivial exploitation of a uniqueness property of the Chow points associated with \(T\)-critical metrics. The method of the proof is a clever development of arguments in [S. K. Donaldson, J. Differ. Geom. 59, 479–522 (2001; Zbl 1052.32017) and in X. X. Chen, J. Differ. Geom. 59, 189–234 (2000; Zbl 1041.58003)].

MSC:

32Q20 Kähler-Einstein manifolds
14L24 Geometric invariant theory
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
Full Text: DOI

References:

[1] DOI: 10.1007/978-3-642-69828-6_8 · doi:10.1007/978-3-642-69828-6_8
[2] Calabi E., J. Differential Geom. 61 pp 173– · Zbl 1067.58010 · doi:10.4310/jdg/1090351383
[3] Chen X. X., J. Differential Geom. 56 pp 189– · Zbl 1041.58003 · doi:10.4310/jdg/1090347643
[4] Donaldson S. K., J. Differential Geom. 59 pp 479– · Zbl 1052.32017 · doi:10.4310/jdg/1090349449
[5] DOI: 10.1007/BF01446626 · Zbl 0831.53042 · doi:10.1007/BF01446626
[6] DOI: 10.1353/ajm.2000.0013 · Zbl 0972.53042 · doi:10.1353/ajm.2000.0013
[7] Mabuchi T., Osaka J. Math. 24 pp 227–
[8] Mabuchi T., Osaka J. Math. 41
[9] D. Mumford, Questions on Algebraic Varieties, C.I.M.E., III Ciclo, Varenna, 1969 (Edizioni Cremonese, Rome, 1970) pp. 29–100.
[10] DOI: 10.1007/978-3-642-57916-5_1 · doi:10.1007/978-3-642-57916-5_1
[11] DOI: 10.1007/s002220050176 · Zbl 0892.53027 · doi:10.1007/s002220050176
[12] Zelditch S., Int. Math. Res. Notices 6 pp 317–
[13] Zhang S., Compositio Math. 104 pp 77–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.