×

A note on the convergence of parametrised non-resonant invariant manifolds. (English) Zbl 1209.37028

Summary: Truncated Taylor series representations of invariant manifolds are abundant in numerical computations. We present an aposteriori method to compute the convergence radii and error estimates of analytic parametrisations of non-resonant local invariant manifolds of a saddle of an analytic vector field, from such a truncated series. This enables us to obtain local enclosures, as well as existence results, for the invariant manifolds.

MSC:

37D10 Invariant manifold theory for dynamical systems
34C45 Invariant manifolds for ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
37M99 Approximation methods and numerical treatment of dynamical systems
65G20 Algorithms with automatic result verification

Software:

C-XSC; C-XSC 2.0; RODES

References:

[1] Alefeld G., Herzberger J.: Introduction to Interval Computations. Academic Press, New York (1983) · Zbl 0552.65041
[2] Beyn W.-J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990) · Zbl 0706.65080 · doi:10.1093/imanum/10.3.379
[3] Blomquist, F., Hofschuster, W., Krämer, W.: Real and Complex Taylor Arithmetic in C-XSC Preprint 2005/4, Universität Wuppertal (2005). Available from http://www.math.uni-wuppertal.de/xsc
[4] Cabré X., Fontich E., de la Llave R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003) · Zbl 1034.37016 · doi:10.1512/iumj.2003.52.2245
[5] Cabré X., Fontich E., de la Llave R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005) · Zbl 1101.37019 · doi:10.1016/j.jde.2004.12.003
[6] CXSC–C++ eXtension for Scientific Computation, version 2.2.3. Available from http://www.math.uni-wuppertal.de/xsc
[7] Dellnitz M., Hohmann A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75(3), 293–317 (1997) · Zbl 0883.65060 · doi:10.1007/s002110050240
[8] Griewank, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation, SIAM Frontiers Appl. Math. 19, SIAM, Philadelphia (2000) · Zbl 0958.65028
[9] Hammer R., Hocks M., Kulisch U., Ratz D.: C++ toolbox for verified computing. Springer, New York (1995) · Zbl 0828.68041
[10] Hille E.: Ordinary Differential Equations In The Complex Domain. Pure And Applied Mathematics. Wiley-Interscience, New York (1976) · Zbl 0343.34007
[11] Hirsch M.W., Pugh C.C., Shub M.: Invariant manifolds Lecture Notes in Mathematics, Vol. 583. Springer, Berlin (1977)
[12] Johnson T., Tucker W.: Automated computation of robust normal forms of planar analytic vector fields. Discret. contin. dyn. syst.–Series B. 12(4), 769–782 (2009) · Zbl 1185.34045 · doi:10.3934/dcdsb.2009.12.769
[13] Krauskopf B., Osinga H.M., Doedel E.J., Henderson M.E., Guckenheimer J., Vladimirsky A., Dellnitz M., Junge O.: A survey of methods for computing (un)stable manifolds of vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 763–791 (2005) · Zbl 1086.34002 · doi:10.1142/S0218127405012533
[14] Moore G., Hubert E.: Algorithms for constructing stable manifolds of stationary solutions. IMA J. Numer. Anal. 19(3), 375–424 (1999) · Zbl 0947.65135 · doi:10.1093/imanum/19.3.375
[15] Moore R.E.: Interval Analysis. Prentice-Hall, New Jersey (1966) · Zbl 0176.13301
[16] Moore R.E.: Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1979) · Zbl 0417.65022
[17] Neumaier A.: Interval Methods For Systems Of Equations. Encyclopedia of Mathematics and its Applications, vol. 37. Cambridge University Press, Cambridge (1990) · Zbl 0715.65030
[18] Neumaier A., Rage T.: Rigorous chaos verification in discrete dynamical systems. Phys. D 67(4), 327–346 (1993) · Zbl 0783.58047 · doi:10.1016/0167-2789(93)90169-2
[19] Ombach J.: Computation of the local stable and unstable manifolds. Univ. Iagel. Acta Math. 32, 129–136 (1995) · Zbl 0831.58044
[20] Palis J., de Melo W.: Geometric theory of dynamical systems. An introduction Translated from the Portuguese by A. K. Manning. Springer, New York (1982) · Zbl 0491.58001
[21] Siegel, C.L.: Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt, pp. 21–30 (1952) · Zbl 0047.32901
[22] Siegel C.L., Moser J.K.: Lectures on celestial mechanics Translation by Charles I. Kalme Die Grundlehren der mathematischen Wissenschaften, Band 187. Springer, New York (1971) · Zbl 0312.70017
[23] Simó, C.: On the Analytical and Numerical Approximation of Invariant Manifolds, Les Méthodes Modernes de la Mecánique Céleste, Benest, D., Foeschlé, C. (eds.) Editions Frontièrs, Paris, pp. 285–329 (1990)
[24] Tucker W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002) · Zbl 1047.37012
[25] Tucker W.: Robust normal forms for saddles of analytic vector fields. Nonlinearity 17, 1965–1983 (2004) · Zbl 1081.37028 · doi:10.1088/0951-7715/17/5/020
[26] Zgliczyński P.: Covering relations, cone conditions and stable manifold theorem. J. Differ. Equ. 246(5), 1774–1819 (2009) · Zbl 1185.37045 · doi:10.1016/j.jde.2008.12.019
[27] Zgliczyński, P.: Private communication (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.