×

Generation and breakup of Worthington jets after cavity collapse. I: Jet formation. (English) Zbl 1205.76050

Summary: At the beginning of the last century Worthington and Cole discovered that the high-speed jets ejected after the impact of an axisymmetric solid on a liquid surface are intimately related to the formation and collapse of an air cavity created in the wake of the impactor. In this paper, we combine detailed boundary-integral simulations with analytical modelling to describe the formation of such Worthington jets after the impact of a circular disk on water. We extend our earlier model in Gekle et al. [Phys. Rev. Lett. 102, 2009a, 034502 (2009)], valid for describing only the jet base dynamics, to describe the whole jet. We find that the flow structure inside the jet may be divided into three different regions: the axial acceleration region, where the radial momentum of the incoming liquid is converted to axial momentum; the ballistic region, where fluid particles experience no further acceleration and move constantly with the velocity obtained at the end of the acceleration region; and the jet tip region, where the jet eventually breaks into droplets. From our modelling of the ballistic region we conclude that, contrary to the case of other physical situations where high-speed jets are also ejected, the types of Worthington jets studied here cannot be described using the theory of hyperbolic jets of M. S. Longuet-Higgins [J. Fluid Mech. 127, 103–121 (1983; Zbl 0517.76103)]. Most importantly, we find that the velocity and the shape of the ejected jets can be well predicted at any instant in time with the only knowledge of quantities obtained before pinch-off occurs. This fact allows us to provide closed expressions for the jet velocity and the sizes of the ejected droplets as a function of the velocity and the size of the impactor. We show that our results are also applicable to Worthington jets emerging after the collapse of a bubble growing from an underwater nozzle, although this system creates thicker jets than the disk impact.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing

Citations:

Zbl 0517.76103

References:

[1] DOI: 10.1017/S0022112083002645 · Zbl 0517.76103 · doi:10.1017/S0022112083002645
[2] DOI: 10.1017/S0022112095002461 · Zbl 0843.76005 · doi:10.1017/S0022112095002461
[3] DOI: 10.1103/PhysRevLett.93.198003 · doi:10.1103/PhysRevLett.93.198003
[4] DOI: 10.1017/S0022112081002322 · doi:10.1017/S0022112081002322
[5] DOI: 10.1063/1.1698173 · doi:10.1063/1.1698173
[6] DOI: 10.1039/b717798b · doi:10.1039/b717798b
[7] DOI: 10.1103/PhysRevLett.96.154505 · doi:10.1103/PhysRevLett.96.154505
[8] DOI: 10.1063/1.1537237 · Zbl 1185.76225 · doi:10.1063/1.1537237
[9] DOI: 10.1017/S0022112009006983 · Zbl 1183.76008 · doi:10.1017/S0022112009006983
[10] DOI: 10.1103/PhysRevLett.97.144503 · doi:10.1103/PhysRevLett.97.144503
[11] DOI: 10.1038/35000151 · doi:10.1038/35000151
[12] DOI: 10.1103/PhysRevLett.96.124501 · doi:10.1103/PhysRevLett.96.124501
[13] DOI: 10.1017/S0022112005006282 · Zbl 1080.76012 · doi:10.1017/S0022112005006282
[14] DOI: 10.1146/annurev.fluid.38.050304.092144 · Zbl 1097.76012 · doi:10.1146/annurev.fluid.38.050304.092144
[15] Ashley, Aerodynamics of Wings and Bodies (1965) · Zbl 0161.22502
[16] DOI: 10.1016/S0167-2789(98)00120-1 · Zbl 0962.76506 · doi:10.1016/S0167-2789(98)00120-1
[17] DOI: 10.1098/rsta.1900.0016 · doi:10.1098/rsta.1900.0016
[18] DOI: 10.1017/S0022112008004382 · Zbl 1156.76351 · doi:10.1017/S0022112008004382
[19] Gurevich, The Theory of Jets in an Ideal Fluid (1966)
[20] DOI: 10.1098/rsta.1897.0005 · JFM 28.0736.06 · doi:10.1098/rsta.1897.0005
[21] DOI: 10.1017/S0022112007005058 · Zbl 1110.76014 · doi:10.1017/S0022112007005058
[22] DOI: 10.1103/PhysRevLett.99.114502 · doi:10.1103/PhysRevLett.99.114502
[23] DOI: 10.1017/S002211209800411X · Zbl 0931.76011 · doi:10.1017/S002211209800411X
[24] DOI: 10.1103/PhysRevLett.103.124501 · doi:10.1103/PhysRevLett.103.124501
[25] DOI: 10.1103/PhysRevLett.95.194501 · doi:10.1103/PhysRevLett.95.194501
[26] DOI: 10.1063/1.2747996 · Zbl 1182.76283 · doi:10.1063/1.2747996
[27] DOI: 10.1017/S0022112007004648 · Zbl 1178.76394 · doi:10.1017/S0022112007004648
[28] Gordillo, J. Fluid Mech (2010)
[29] DOI: 10.1063/1.3253394 · Zbl 1183.76519 · doi:10.1063/1.3253394
[30] DOI: 10.1063/1.3009297 · Zbl 1182.76282 · doi:10.1063/1.3009297
[31] DOI: 10.1063/1.1328359 · Zbl 1184.76548 · doi:10.1063/1.1328359
[32] DOI: 10.1063/1.869010 · doi:10.1063/1.869010
[33] DOI: 10.1017/S0022112091000836 · Zbl 0728.76112 · doi:10.1017/S0022112091000836
[34] DOI: 10.1017/S0022112003007274 · Zbl 1049.76533 · doi:10.1017/S0022112003007274
[35] DOI: 10.1016/S0997-7546(01)01177-3 · Zbl 1039.76068 · doi:10.1016/S0997-7546(01)01177-3
[36] DOI: 10.1146/annurev.fluid.40.111406.102215 · Zbl 1136.76002 · doi:10.1146/annurev.fluid.40.111406.102215
[37] DOI: 10.1103/PhysRevE.80.036305 · doi:10.1103/PhysRevE.80.036305
[38] DOI: 10.1063/1.2718479 · Zbl 1146.76554 · doi:10.1063/1.2718479
[39] DOI: 10.1103/PhysRevLett.104.024501 · doi:10.1103/PhysRevLett.104.024501
[40] DOI: 10.1063/1.2710269 · Zbl 1146.76553 · doi:10.1063/1.2710269
[41] DOI: 10.1103/PhysRevLett.102.034502 · doi:10.1103/PhysRevLett.102.034502
[42] DOI: 10.1017/S0022112001007030 · Zbl 1156.76336 · doi:10.1017/S0022112001007030
[43] DOI: 10.1063/1.857581 · doi:10.1063/1.857581
[44] DOI: 10.1038/nphys1233 · doi:10.1038/nphys1233
[45] DOI: 10.1103/PhysRevLett.100.084502 · doi:10.1103/PhysRevLett.100.084502
[46] DOI: 10.1038/nphys545 · doi:10.1038/nphys545
[47] DOI: 10.1016/0169-5983(93)90106-K · doi:10.1016/0169-5983(93)90106-K
[48] DOI: 10.1017/S0022112007007343 · Zbl 1125.76338 · doi:10.1017/S0022112007007343
[49] Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics (1997)
[50] DOI: 10.1063/1.1494072 · Zbl 1185.76115 · doi:10.1063/1.1494072
[51] DOI: 10.1103/PhysRevLett.90.214502 · doi:10.1103/PhysRevLett.90.214502
[52] DOI: 10.1063/1.3073968 · Zbl 1183.76183 · doi:10.1063/1.3073968
[53] DOI: 10.1017/S0022112093003015 · doi:10.1017/S0022112093003015
[54] DOI: 10.1017/S0022112007004892 · Zbl 1111.76302 · doi:10.1017/S0022112007004892
[55] DOI: 10.1017/S0022112090002890 · doi:10.1017/S0022112090002890
[56] DOI: 10.1103/PhysRevLett.101.214502 · doi:10.1103/PhysRevLett.101.214502
[57] DOI: 10.1063/1.870332 · Zbl 1149.76486 · doi:10.1063/1.870332
[58] DOI: 10.1103/PhysRevLett.94.184502 · doi:10.1103/PhysRevLett.94.184502
[59] DOI: 10.1063/1.1699831 · doi:10.1063/1.1699831
[60] DOI: 10.1017/S0022112093002216 · Zbl 0780.76011 · doi:10.1017/S0022112093002216
[61] DOI: 10.1063/1.3009298 · Zbl 1182.76071 · doi:10.1063/1.3009298
[62] DOI: 10.1021/j100848a034 · doi:10.1021/j100848a034
[63] DOI: 10.1017/S0022112093002654 · doi:10.1017/S0022112093002654
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.