×

Controlled impact of a disk on a water surface: cavity dynamics. (English) Zbl 1183.76008

Summary: We study the transient surface cavity which is created by the controlled impact of a disk of radius \(h_{0}\) on a water surface at Froude numbers below 200. The dynamics of the transient free surface is recorded by high-speed imaging and compared to boundary integral simulations giving excellent agreement. The flow surrounding the cavity is measured with high-speed particle image velocimetry and is found to also agree perfectly with the flow field obtained from the simulations. We present a simple model for the radial dynamics of the cavity based on the collapse of an infinite cylinder. This model accounts for the observed asymmetry of the radial dynamics between the expansion and the contraction phases of the cavity. It reproduces the scaling of the closure depth and total depth of the cavity which are both found to scale roughly as \(\propto Fr^{1/2}\) with a weakly Froude-number-dependent prefactor. In addition, the model accurately captures the dynamics of the minimal radius of the cavity and the scaling of the volume \(V_{bubble}\) of air entrained by the process, namely, \(V_{bubble} / h^3_0 \propto (1+0.26 Fr^{1/2}) Fr^{1/2}\).

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76M25 Other numerical methods (fluid mechanics) (MSC2010)

References:

[1] Bergmann, Phys. Rev. Lett. 96 (2006)
[2] DOI: 10.1103/PhysRevLett.99.018001 · doi:10.1103/PhysRevLett.99.018001
[3] DOI: 10.1063/1.1328359 · Zbl 1184.76548 · doi:10.1063/1.1328359
[4] DOI: 10.1063/1.2710269 · Zbl 1146.76553 · doi:10.1063/1.2710269
[5] DOI: 10.1038/nphys175 · doi:10.1038/nphys175
[6] DOI: 10.1016/0169-5983(93)90106-K · doi:10.1016/0169-5983(93)90106-K
[7] DOI: 10.1098/rsta.1997.0020 · Zbl 0883.76013 · doi:10.1098/rsta.1997.0020
[8] Prosperetti, Drop Surface Interactions. (2002)
[9] Power, Boundary Integral Methods in Fluid Mechanics. (1995) · Zbl 0815.76001
[10] DOI: 10.1017/S0022112095002850 · doi:10.1017/S0022112095002850
[11] DOI: 10.1017/S0022112093003015 · doi:10.1017/S0022112093003015
[12] DOI: 10.1029/JC094iC03p03255 · doi:10.1029/JC094iC03p03255
[13] DOI: 10.1098/rsta.1897.0005 · JFM 28.0736.06 · doi:10.1098/rsta.1897.0005
[14] Worthington, A Study of Splashes. (1908)
[15] DOI: 10.1017/S0022112090002890 · doi:10.1017/S0022112090002890
[16] DOI: 10.1063/1.870332 · Zbl 1149.76486 · doi:10.1063/1.870332
[17] DOI: 10.1103/PhysRevLett.93.198003 · doi:10.1103/PhysRevLett.93.198003
[18] DOI: 10.1063/1.869472 · Zbl 1185.76448 · doi:10.1063/1.869472
[19] DOI: 10.1103/PhysRevLett.102.034502 · doi:10.1103/PhysRevLett.102.034502
[20] Le, J. Imag. Sci. Tech. 42 pp 49– (1998)
[21] DOI: 10.1103/PhysRevLett.100.084502 · doi:10.1103/PhysRevLett.100.084502
[22] DOI: 10.1063/1.2397015 · Zbl 1146.76364 · doi:10.1063/1.2397015
[23] DOI: 10.1063/1.869787 · doi:10.1063/1.869787
[24] DOI: 10.1121/1.2216560 · doi:10.1121/1.2216560
[25] DOI: 10.1063/1.1652061 · Zbl 1186.76166 · doi:10.1063/1.1652061
[26] DOI: 10.1038/380340a0 · doi:10.1038/380340a0
[27] DOI: 10.1017/S0022112007007343 · Zbl 1125.76338 · doi:10.1017/S0022112007007343
[28] DOI: 10.1063/1.1698377 · doi:10.1063/1.1698377
[29] DOI: 10.1063/1.1427441 · Zbl 1184.76098 · doi:10.1063/1.1427441
[30] DOI: 10.1017/S0022112008004382 · Zbl 1156.76351 · doi:10.1017/S0022112008004382
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.