×

Sato processes in default modelling. (English) Zbl 1201.91216

Summary: In reduced form default models, the instantaneous default intensity is the classical modelling object. Survival probabilities are then given by the Laplace transform of the cumulative hazard defined as the integrated intensity process. Instead, recent literature tends to specify the cumulative hazard process directly. Within this framework we present a new model class where cumulative hazards are described by self-similar additive processes, also known as Sato processes. Furthermore, we analyse specifications obtained via a simple deterministic time change of a homogeneous Lévy process. While the processes in these two classes share the same average behaviour over time, the associated intensities exhibit very different properties. Concrete specifications are calibrated to data on all the single names included in the iTraxx Europe index. The performances are compared with those of the classical Cox-Ingersoll-Ross intensity and a recently proposed class of intensity models based on Ornstein-Uhlenbeck-type processes. It is shown that the time-inhomogeneous Lévy models achieve comparable calibration errors with fewer parameters and with more stable parameter estimates over time. However, the calibration performance of the Sato processes and the time-change specifications are practically indistinguishable.

MSC:

91G40 Credit risk
60G18 Self-similar stochastic processes
60G51 Processes with independent increments; Lévy processes
Full Text: DOI

References:

[1] DOI: 10.1111/1467-9868.00282 · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[2] DOI: 10.1214/00-AAP520 · Zbl 1158.91011 · doi:10.1214/00-AAP520
[3] Bielecki T., Credit Risk: Modeling, Valuation and Hedging (2002) · Zbl 0979.91050
[4] Brémaud P., Probability Theory and Related Fields 45 pp 269– (1978)
[5] DOI: 10.1007/s00780-004-0131-x · Zbl 1065.60085 · doi:10.1007/s00780-004-0131-x
[6] DOI: 10.1142/S0219024906003597 · Zbl 1154.91429 · doi:10.1142/S0219024906003597
[7] Brigo D., Mathematical Finance (2009)
[8] DOI: 10.1007/s00184-008-0213-4 · Zbl 1433.91184 · doi:10.1007/s00184-008-0213-4
[9] DOI: 10.1007/s00780-005-0155-x · Zbl 1096.91022 · doi:10.1007/s00780-005-0155-x
[10] DOI: 10.1111/j.1467-9965.2007.00293.x · Zbl 1278.91157 · doi:10.1111/j.1467-9965.2007.00293.x
[11] DOI: 10.2307/1911242 · Zbl 1274.91447 · doi:10.2307/1911242
[12] DOI: 10.1142/S0219024909005142 · Zbl 1182.91182 · doi:10.1142/S0219024909005142
[13] DOI: 10.2307/2329437 · doi:10.2307/2329437
[14] DOI: 10.1093/rfs/12.4.687 · doi:10.1093/rfs/12.4.687
[15] DOI: 10.1080/14697680701861419 · Zbl 1171.91327 · doi:10.1080/14697680701861419
[16] DOI: 10.1111/1467-9965.00088 · Zbl 1042.91038 · doi:10.1111/1467-9965.00088
[17] Halgreen C., Probability Theory and Related Fields 47 pp 13– (1979) · Zbl 0377.60020
[18] DOI: 10.3905/jod.2003.319200 · doi:10.3905/jod.2003.319200
[19] DOI: 10.3905/jod.2008.707207 · doi:10.3905/jod.2008.707207
[20] Jacod J., Limit Theorems for Stochastic Processes (1987) · doi:10.1007/978-3-662-02514-7
[21] DOI: 10.1093/rfs/10.2.481 · doi:10.1093/rfs/10.2.481
[22] DOI: 10.2307/2329239 · doi:10.2307/2329239
[23] Jeanblanc M., Mathematical Finance: Theory and Practice pp 171– (2000)
[24] Jeanblanc M., Mathematical Finance - Bachelier Congress 2000 pp 281– (2002) · doi:10.1007/978-3-662-12429-1_14
[25] Joshi M., Risk Magazine 19 pp 78– (2006)
[26] Lando D., Review of Derivatives Research 2 pp 99– (1998)
[27] Lando D., Credit Risk Modeling: Theory and Applications (2004) · Zbl 1178.91211
[28] DOI: 10.1086/296519 · doi:10.1086/296519
[29] Madan D., Review of Derivatives Research 2 pp 121– (1998)
[30] Nicolato E., International Journal of Mathematics, Statistics and Financial Economics 13 pp 445– (2003)
[31] DOI: 10.1111/1467-9965.00067 · Zbl 0980.91039 · doi:10.1111/1467-9965.00067
[32] DOI: 10.1007/BF01198788 · Zbl 0725.60034 · doi:10.1007/BF01198788
[33] Sato K., Lévy Processes and Infinitely Divisible Distributions (1999) · Zbl 0973.60001
[34] Skovmand D., Libor market models: Theory and applications (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.