×

On the homotopy Lie algebra of an arrangement. (English) Zbl 1198.17012

Summary: Let \(A\) be a graded-commutative, connected \(k\)-algebra generated in degree 1. The homotopy Lie algebra \(g_A\) is defined to be the Lie algebra of primitives of the Yoneda algebra, \(\text{Ext}_A(k,k)\). Under certain homological assumptions on \(A\) and its quadratic closure, we express \(g_A\) as a semi-direct product of the well-understood holonomy Lie algebra \(h_A\) with a certain \(h_A\)-module. This allows us to compute the homotopy Lie algebra associated to the cohomology ring of the complement of a complex hyperplane arrangement, provided some combinatorial assumptions are satisfied. As an application, we give examples of hyperplane arrangements whose complements have the same Poincaré polynomial, the same fundamental group, and the same holonomy Lie algebra, yet different homotopy Lie algebras.

MSC:

17B55 Homological methods in Lie (super)algebras
16S37 Quadratic and Koszul algebras
17B70 Graded Lie (super)algebras
16E05 Syzygies, resolutions, complexes in associative algebras
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
55P62 Rational homotopy theory

Software:

Macaulay2

References:

[1] L. Avramov, Small homomorphisms of local rings, J. Algebra 50 (1978), 400–453. · Zbl 0395.13005 · doi:10.1016/0021-8693(78)90163-1
[2] ——, Golod homomorphisms, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., 1183, pp. 59–78, Springer-Verlag, Berlin, 1986. · Zbl 0589.13004 · doi:10.1007/BFb0075450
[3] ——, Infinite free resolutions, Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., 166, pp. 1–118, Birkhäuser, Basel, 1998. · Zbl 0934.13008
[4] A. Björner and G. Ziegler, Broken circuit complexes: Factorizations and generalizations, J. Combin. Theory Ser. B 51 (1991), 96–126. · Zbl 0753.05019 · doi:10.1016/0095-8956(91)90008-8
[5] D. C. Cohen, F. R. Cohen, and M. Xicoténcatl, Lie algebras associated to fiber-type arrangements, Internat. Math. Res. Notices 29 (2003), 1591–1621. · Zbl 1094.17007 · doi:10.1155/S1073792803208102
[6] G. Denham and S. Yuzvinsky, Annihilators of Orlik–Solomon relations, Adv. in Appl. Math. 28 (2002), 231–249. · Zbl 1004.05019 · doi:10.1006/aama.2001.0779
[7] A. Dimca and S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. of Math. (2) 158 (2003), 473–507. · Zbl 1068.32019 · doi:10.4007/annals.2003.158.473
[8] D. Eisenbud, S. Popescu, and S. Yuzvinsky, Hyperplane arrangement cohomology and monomials in the exterior algebra, Trans. Amer. Math. Soc. 355 (2003), 4365–4383. · Zbl 1034.52019 · doi:10.1090/S0002-9947-03-03292-6
[9] M. Falk, The minimal model of the complement of an arrangement of hyperplanes, Trans. Amer. Math. Soc. 309 (1988), 543–556. JSTOR: · Zbl 0707.57001 · doi:10.2307/2000924
[10] ——, Line-closed matroids, quadratic algebras, and formal arrangements, Adv. in Appl. Math. 28 (2002), 250–271. · Zbl 1001.05039 · doi:10.1006/aama.2001.0780
[11] M. Falk and R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77–88. · Zbl 0574.55010 · doi:10.1007/BF01394780
[12] Y. Félix and J.-C. Thomas, On the ubiquity of the rational homotopy Lie algebra of a topological space, Bull. Soc. Math. Belg. Sér. A 38 (1986), 175–190. · Zbl 0637.55005
[13] R. Fröberg, Koszul algebras, Advances in commutative ring theory (Fez, 1997), Lecture Notes in Pure and Appl. Math., 205, pp. 337–350, Dekker, New York, 1999.
[14] R. Fröberg and C. Löfwall, Koszul homology and Lie algebras with application to generic forms and points, Homology Homotopy Appl. 4 (2002), 227–258. · Zbl 1066.13014 · doi:10.4310/HHA.2002.v4.n2.a11
[15] D. Grayson and M. Stillman, Macaulay 2: A software system for research in algebraic geometry ; available at \(\langle \)http://www.math.uiuc.edu/Macaulay2\(\rangle .\)
[16] M. Jambu and S. Papadima, A generalization of fiber-type arrangements and a new deformation method, Topology 37 (1998), 1135–1164. · Zbl 0988.52031 · doi:10.1016/S0040-9383(97)00092-X
[17] ——, Deformations of hypersolvable arrangements, Arrangements in Boston: A conference on hyperplane arrangements (1999), Topology Appl. 118 (2002), 103–111. · Zbl 0995.32017 · doi:10.1016/S0166-8641(01)00044-X
[18] P. Jørgensen, Non-commutative Castelnuovo–Mumford regularity, Math. Proc. Cambridge Philos. Soc. 125 (1999), 203–221. · Zbl 0920.14002 · doi:10.1017/S0305004198002862
[19] C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., 1183, pp. 291–338, Springer-Verlag, Berlin, 1986.
[20] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. JSTOR: · Zbl 0163.28202 · doi:10.2307/1970615
[21] H. K. Nandi, Enumeration of non-isomorphic solutations of balanced incomplete block designs, Sankhyā 7 (1946), 305–312. · Zbl 0060.31411
[22] P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren Math. Wiss., 300, Springer-Verlag, Berlin, 1992. · Zbl 0757.55001
[23] S. Papadima and A. I. Suciu, Higher homotopy groups of complements of complex hyperplane arrangements, Adv. Math. 165 (2002), 71–100. · Zbl 1019.52016 · doi:10.1006/aima.2001.2023
[24] ——, Homotopy Lie algebras, lower central series, and the Koszul property, Geom. Topol. 8 (2004), 1079–1125. · Zbl 1127.55004 · doi:10.2140/gt.2004.8.1079
[25] S. Papadima and S. Yuzvinsky, On rational \(K[\pi ,1]\) spaces and Koszul algebras, J. Pure Appl. Algebra 144 (1999), 157–167. · Zbl 0937.55009 · doi:10.1016/S0022-4049(98)00058-9
[26] D. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411–418. · Zbl 0192.35803 · doi:10.1016/0021-8693(68)90069-0
[27] V. V. Schechtman and A. N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), 139–194. · Zbl 0754.17024 · doi:10.1007/BF01243909
[28] H. K. Schenck and A. I. Suciu, Resonance, linear syzygies, Chen groups, and the Bernstein–Gelfand–Gelfand correspondence, Trans. Amer. Math. Soc. 358 (2006), 2269–2289. · Zbl 1153.52008 · doi:10.1090/S0002-9947-05-03853-5
[29] D. W. Sharpe and P. Vámos, Injective modules, Cambridge Tracts Math. Math. Phys., 62, Cambridge Univ. Press, London, 1972. · Zbl 0245.13001
[30] B. Shelton and S. Yuzvinsky, Koszul algebras from graphs and hyperplane arrangements, J. London Math. Soc. (2) 56 (1997), 477–490. · Zbl 0959.16026 · doi:10.1112/S0024610797005553
[31] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331. · Zbl 0374.57002 · doi:10.1007/BF02684341
[32] S. Yuzvinsky, Small rational model of subspace complement, Trans. Amer. Math. Soc. 354 (2002), 1921–1945. JSTOR: · Zbl 0997.52015 · doi:10.1090/S0002-9947-02-02924-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.