×

Homotopy Lie algebras; lower central series and the Koszul property. (English) Zbl 1127.55004

Summary: Let \(X\) and \(Y\) be finite-type CW-complexes (\(X\) connected, \(Y\) simply connected), such that the rational cohomology ring of \(Y\) is a \(k\)-rescaling of the rational cohomology ring of \(X\). Assume \(H^*(X,Q)\) is a Koszul algebra. Then, the homotopy Lie algebra \(\pi_*(\Omega Y)\otimes Q\) equals, up to \(k\)-rescaling, the graded rational Lie algebra associated to the lower central series of \(\pi_1(X)\). If \(Y\) is a formal space, this equality is actually equivalent to the Koszulness of \(H^*(X,Q)\). If \(X\) is formal (and only then), the equality lifts to a filtered isomorphism between the Malcev completion of \(\pi_1(X)\) and the completion of \([\Omega S^{2k+1},\Omega Y]\). Among spaces that admit naturally defined homological rescalings are complements of complex hyperplane arrangements, and complements of classical links. The Rescaling Formula holds for supersolvable arrangements, as well as for links with connected linking graph.

MSC:

55Q15 Whitehead products and generalizations
16S37 Quadratic and Koszul algebras
20F14 Derived series, central series, and generalizations for groups
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57Q45 Knots and links in high dimensions (PL-topology) (MSC2010)
55P62 Rational homotopy theory

References:

[1] D J Anick, Connections between Yoneda and Pontrjagin algebras, Lecture Notes in Math. 1051, Springer (1984) 331 · Zbl 0542.57035
[2] H J Baues, Commutator calculus and groups of homotopy classes, London Mathematical Society Lecture Note Series 50, Cambridge University Press (1981) · Zbl 0473.55001
[3] A Beilinson, V Ginzburg, W Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473 · Zbl 0864.17006 · doi:10.1090/S0894-0347-96-00192-0
[4] A K Bousfield, V K A M Gugenheim, On \(\mathrm{PL}\) de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976) · Zbl 0338.55008
[5] B Berceanu, \cS Papadima, Cohomologically generic 2-complexes and 3-dimensional Poincaré complexes, Math. Ann. 298 (1994) 457 · Zbl 0791.57007 · doi:10.1007/BF01459745
[6] R Bott, H Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv. 27 (1953) · Zbl 0052.19301 · doi:10.1007/BF02564566
[7] E Brieskorn, Sur les groupes de tresses [d’après V I: Arnol’ d], Springer (1973) · Zbl 0277.55003
[8] D C Cohen, F R Cohen, M Xicoténcatl, Lie algebras associated to fiber-type arrangements, Int. Math. Res. Not. (2003) 1591 · Zbl 1094.17007 · doi:10.1155/S1073792803208102
[9] F R Cohen, S Gitler, Loop spaces of configuration spaces, braid-like groups, and knots, Progr. Math. 196, Birkhäuser (2001) 59 · Zbl 1005.57010
[10] F R Cohen, S Gitler, On loop spaces of configuration spaces, Trans. Amer. Math. Soc. 354 (2002) 1705 · Zbl 0992.55006 · doi:10.1090/S0002-9947-02-02948-3
[11] F R Cohen, T Kohno, M Xicoténcatl, Orbit configuration spaces associated to discrete subgroups of \(\mathrm{PSL}(2,\mathbbR)\) · Zbl 1196.55022 · doi:10.1016/j.jpaa.2009.04.003
[12] F R Cohen, T Sato, On groups of homotopy groups, loop spaces and braid-like groups, preprint (2001)
[13] F R Cohen, M A Xicoténcatl, On orbit configuration spaces associated to the Gaussian integers: homotopy and homology groups, Topology Appl. 118 (2002) 17 · Zbl 0992.55016 · doi:10.1016/S0166-8641(01)00039-6
[14] C De Concini, C Procesi, Wonderful models of subspace arrangements, Selecta Math. \((\)N.S.\()\) 1 (1995) 459 · Zbl 0842.14038 · doi:10.1007/BF01589496
[15] P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245 · Zbl 0312.55011 · doi:10.1007/BF01389853
[16] E R Fadell, S Y Husseini, Geometry and topology of configuration spaces, Springer Monographs in Mathematics, Springer (2001) · Zbl 0962.55001
[17] M Falk, R Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77 · Zbl 0574.55010 · doi:10.1007/BF01394780
[18] A Hattori, Topology of \(C^n\) minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975) 205 · Zbl 0306.55011
[19] P Hilton, G Mislin, J Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies 15, North-Holland Publishing Co. (1975) · Zbl 0323.55016
[20] M Jambu, S Papadima, A generalization of fiber-type arrangements and a new deformation method, Topology 37 (1998) 1135 · Zbl 0988.52031 · doi:10.1016/S0040-9383(97)00092-X
[21] M A Kervaire, An interpretation of G. Whitehead’s generalization of H. Hopf’s invariant, Ann. of Math. \((2)\) 69 (1959) 345 · Zbl 0088.39205 · doi:10.2307/1970187
[22] T Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985) 57 · Zbl 0574.55009 · doi:10.1007/BF01394779
[23] U Koschorke, D Rolfsen, Higher-dimensional link operations and stable homotopy, Pacific J. Math. 139 (1989) 87 · Zbl 0638.57011 · doi:10.2140/pjm.1989.139.87
[24] J P Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970) 16 · Zbl 0198.34601 · doi:10.1016/0021-8693(70)90130-4
[25] M Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Ecole Norm. Sup. \((3)\) 71 (1954) 101 · Zbl 0055.25103
[26] M Markl, \cS Papadima, Homotopy Lie algebras and fundamental groups via deformation theory, Ann. Inst. Fourier (Grenoble) 42 (1992) 905 · Zbl 0760.55010 · doi:10.5802/aif.1315
[27] J Milnor, Morse theory, Annals of Mathematics Studies 51, Princeton University Press (1963)
[28] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. \((2)\) 81 (1965) 211 · Zbl 0163.28202 · doi:10.2307/1970615
[29] J Neisendorfer, T Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978) 565 · Zbl 0396.55011
[30] A Némethi, The link of the sum of two holomorphic functions, Univ. Bucure\csti, Bucharest (1988) 181 · Zbl 0657.32004
[31] M Oka, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan 30 (1978) 579 · Zbl 0387.14004 · doi:10.2969/jmsj/03040579
[32] \cS Papadima, The cellular structure of formal homotopy types, J. Pure Appl. Algebra 35 (1985) 171 · Zbl 0561.55012 · doi:10.1016/0022-4049(85)90039-8
[33] S Papadima, Campbell-Hausdorff invariants of links, Proc. London Math. Soc. \((3)\) 75 (1997) 641 · Zbl 0901.57009 · doi:10.1112/S0024611597000464
[34] S Papadima, Braid commutators and homogenous Campbell-Hausdorff tests, Pacific J. Math. 197 (2001) 383 · Zbl 1051.57011 · doi:10.2140/pjm.2001.197.383
[35] S Papadima, A I Suciu, Rational homotopy groups and Koszul algebras, C. R. Math. Acad. Sci. Paris 335 (2002) 53 · Zbl 1006.55007 · doi:10.1016/S1631-073X(02)02420-2
[36] S Papadima, A I Suciu, Chen Lie algebras, Int. Math. Res. Not. (2004) 1057 · Zbl 1076.17007 · doi:10.1155/S1073792804132017
[37] S Papadima, S Yuzvinsky, On rational \(K[\pi,1]\) spaces and Koszul algebras, J. Pure Appl. Algebra 144 (1999) 157 · Zbl 0937.55009 · doi:10.1016/S0022-4049(98)00058-9
[38] G J Porter, Higher-order Whitehead products, Topology 3 (1965) 123 · Zbl 0149.20204 · doi:10.1016/0040-9383(65)90039-X
[39] S B Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39 · Zbl 0261.18016 · doi:10.2307/1995637
[40] D Quillen, Rational homotopy theory, Ann. of Math. \((2)\) 90 (1969) 205 · Zbl 0191.53702 · doi:10.2307/1970725
[41] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1976) · Zbl 0339.55004
[42] J E Roos, On the characterisation of Koszul algebras. Four counterexamples, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 15 · Zbl 0848.13018
[43] T Sato, On the group of morphisms of coalgebras, PhD thesis, University of Rochester, New York (2000)
[44] H Scheerer, On rationalized \(H\)- and co-\(H\)-spaces. With an appendix on decomposable \(H\)- and co-\(H\)-spaces, Manuscripta Math. 51 (1985) 63 · Zbl 0569.55006 · doi:10.1007/BF01168347
[45] H K Schenck, A I Suciu, Lower central series and free resolutions of hyperplane arrangements, Trans. Amer. Math. Soc. 354 (2002) 3409 · Zbl 1057.52015 · doi:10.1090/S0002-9947-02-03021-0
[46] J P Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics 1500, Springer (1992) · Zbl 0742.17008
[47] B Shelton, S Yuzvinsky, Koszul algebras from graphs and hyperplane arrangements, J. London Math. Soc. \((2)\) 56 (1997) 477 · Zbl 0959.16026 · doi:10.1112/S0024610797005553
[48] H Shiga, N Yagita, Graded algebras having a unique rational homotopy type, Proc. Amer. Math. Soc. 85 (1982) 623 · Zbl 0512.55013 · doi:10.2307/2044080
[49] T Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269 · Zbl 0868.57016
[50] D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977) · Zbl 0374.57002 · doi:10.1007/BF02684341
[51] D Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics 1025, Springer (1983) · Zbl 0539.55001
[52] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978) · Zbl 0406.55001
[53] S Yuzvinskiĭ, Orlik-Solomon algebras in algebra and topology, Uspekhi Mat. Nauk 56 (2001) 87 · Zbl 1033.52019 · doi:10.1070/RM2001v056n02ABEH000383
[54] S Yuzvinsky, Small rational model of subspace complement, Trans. Amer. Math. Soc. 354 (2002) 1921 · Zbl 0997.52015 · doi:10.1090/S0002-9947-02-02924-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.