×

The homotopy Gerstenhaber algebra of Hochschild cochains of a regular algebra is formal. (English) Zbl 1144.18007

Deligne’s Hochschild conjecture, having stimulated much interest in string theoriests, claims that the Hochschild complex of an associative algebra admits a canonical structure of a differential graded algebra over the chain operad of the little discs operads. Several authors (M. Kontsevich and Y. Soibelman [Volume I. Dordrecht: Kluwer Academic Publishers. Math. Phys. Stud. 21, 255–307 (2000; Zbl 0972.18005)], J. E. McClure and J. H. Smith [Contemp. Math. 293, 153–193 (2002; Zbl 1009.18009)], V. Hinich [Forum Math. 15, No. 4, 591–614 (2003; Zbl 1081.16014)] and A. A. Voronov [Volume II. Dordrecht: Kluwer Academic Publishers. Math. Phys. Stud. 22, 307–331 (2000; Zbl 0974.16005)]) have settled the conjecture affirmatively, which has demonstrated a remarkable fact that the complex \(C^{\cdot}(A)\) of Hochschild cochains of an associative algebra \(A\)is endowed with the distinguishable structure of a homotopy M. Gerstenhaber algebra [Ann. Math. (2) 78, 267–288 (1963; Zbl 0131.27302)]. This paper constructs a natural chain of quasi-isomorphisms of homotopy Gerstenhaber algebras between the Hochschild cochain complex of a regular commutative algebra \(A\) and the Gerstenhaber algebras of multiderivations of \(A\), which enables us to have an explicit construction of a chain of quasi-isomorphisms and to dispense with the really bulky Gelfand-Fuchs machinery in establishing the formality theorem.

MSC:

18D50 Operads (MSC2010)
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
16E45 Differential graded algebras and applications (associative algebraic aspects)
58B99 Infinite-dimensional manifolds
53D55 Deformation quantization, star products

References:

[1] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topologi- cal spaces . Lecture Notes in Math. 347, Springer-Verlag, Berlin 1973. · Zbl 0285.55012
[2] A. C\?ald\?araru, The Mukai pairing, II: the Hochschild-Kostant-Rosenberg isomorphism. Adv. Math. 194 (2005), 34-66. · Zbl 1098.14011
[3] A. S. Cattaneo and G. Felder, Relative formality theorem and quantisation of coisotropic submanifolds. · Zbl 1106.53060 · doi:10.1016/j.aim.2006.03.010
[4] A. V. Dolgushev, Covariant and equivariant formality theorems. Adv. Math. 191 (2005), 147-177. · Zbl 1116.53065 · doi:10.1016/j.aim.2004.02.001
[5] A. V. Dolgushev, A proof of Tsygan’s formality conjecture for an arbitrary smooth mani- fold. PhD thesis, M.I.T.
[6] B. V. Fedosov, A simple geometrical construction of deformation quantization. J. Differ- ential Geom. 40 (1994), 213-238. · Zbl 0812.53034
[7] B. Fresse, Koszul duality of operads and homology of partition posets. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K -theory (Evanston, 2002), Contemp. Math. 346, Amer. Math. Soc. Providence, RI, 2004, 115-215. · Zbl 1077.18007
[8] I. M. Gel’fand and D. B. Fuks, Cohomology of the Lie algebra of formal vector fields. Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 322-337; English transl. Math. USSR-Izv. 4 (1970), 327-342. · Zbl 0216.20302 · doi:10.1070/IM1970v004n02ABEH000908
[9] I. M. Gel’fand and D. A. Každan, Some problems of differential geometry and the calculation of cohomologies of Lie algebras of vector fields. Dokl. Akad. Nauk SSSR 200 (1971), 269-272; English transl. Soviet Math. Dokl. 12 (1971), 1367-1370. · Zbl 0238.58001
[10] M. Gerstenhaber, The cohomology structure of an associative ring. Ann. of Math. (2) 78 (1963), 267-288. · Zbl 0131.27302 · doi:10.2307/1970343
[11] E. Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homol- ogy. In Quantum deformations of algebras and their representations , Israel Math. Conf. Proc. 7, Bar-Ilan Univ., Ramat Gan, 1993, 65-78. · Zbl 0844.18007
[12] E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces.
[13] V. Ginzburg and M. Kapranov, Koszul duality for operads. Duke Math. J. 76 (1994), 203-272. · Zbl 0855.18006 · doi:10.1215/S0012-7094-94-07608-4
[14] G. Halbout, Globalization of Tamarkin’s formality theorem. Lett. Math. Phys. 71 (2005), 39-48. · Zbl 1081.53079 · doi:10.1007/s11005-004-5926-3
[15] V. Hinich, Homological algebra of homotopy algebras. Comm. Algebra 25 (1997), 3291-3323. · Zbl 0894.18008 · doi:10.1080/00927879708826055
[16] V. Hinich, Tamarkin’s proof of Kontsevich formality theorem. Forum Math. 15 (2003), 591-614. · Zbl 1081.16014 · doi:10.1515/form.2003.032
[17] G. Hochschild, B. Kostant, and A. Rosenberg, Differential forms on regular affine alge- bras. Trans. Amer. Math. Soc. 102 (1962), 383-408. · Zbl 0102.27701 · doi:10.2307/1993614
[18] T. V. Kadeishvili, The structure of the A.1/-algebra, and the Hochschild and Harrison cohomologies. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 19-27 (in Russian). · Zbl 0717.55011
[19] M. Kontsevich, Operads and motives in deformation quantization. Lett. Math. Phys. 48 (1999), 35-72. · Zbl 0945.18008 · doi:10.1023/A:1007555725247
[20] M. Kontsevich, Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (2003), 157-216. · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[21] M. Kontsevich and Y. Soibelman, Deformations of algebras over operads and Deligne’s conjecture. In Conférence Moshé Flato 1999 , Vol. I (Dijon), Math. Phys. Stud. 21, Kluwer Acad. Publ., Dordrecht 2000, 255-307. · Zbl 0972.18005
[22] S. L. Lyakhovich and A. A. Sharapov, BRST theory without Hamiltonian and Lagrangian. J. High Energy Phys. 03 (2005), 011.
[23] J. E. McClure and J. H. Smith, A solution of Deligne’s Hochschild cohomology conjecture. In Recent progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math. 293, Amer. Math. Soc., Providence, RI, 2002, 153-193. · Zbl 1009.18009
[24] A. Nijenhuis, A Lie product for the cohomology of subalgebras with coefficients in the quotient. Bull. Amer. Math. Soc. 73 (1967), 962-967. · Zbl 0153.36105 · doi:10.1090/S0002-9904-1967-11865-2
[25] S. B. Priddy, Koszul resolutions. Trans. Amer. Math. Soc. 152 (1970), 39-60. · Zbl 0261.18016 · doi:10.2307/1995637
[26] D. Tamarkin, Another proof of M. Kontsevich formality theorem.
[27] D. Tamarkin, Formality of chain operad of little discs. Lett. Math. Phys. 66 (2003), 65-72. · Zbl 1048.18007 · doi:10.1023/B:MATH.0000017651.12703.a1
[28] M. Van den Bergh, On global deformation quantization in the algebraic case. · Zbl 1133.14021 · doi:10.1016/j.jalgebra.2007.02.012
[29] J. Vey, Déformation du crochet de Poisson sur une variété symplectique. Comment. Math. Helv. 50 (1975), 421-454. · Zbl 0351.53029 · doi:10.1007/BF02565761
[30] A. Voronov, Homotopy Gerstenhaber algebras. In Conférence Moshé Flato 1999 , Vol. II (Dijon), Math. Phys. Stud. 22, Kluwer Acad. Publ., Dordrecht 2000, 307-331. · Zbl 0974.16005
[31] A. Yekutieli, The continuous Hochschild cochain complex of a scheme. Canad. J. Math. 54 (2002), 1319-1337. · Zbl 1047.16004 · doi:10.4153/CJM-2002-051-8
[32] A. Yekutieli, Mixed resolutions, simplicial sections and unipotent group actions. · Zbl 1143.14002 · doi:10.1007/s11856-007-0085-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.