×

Equilibrium fluctuations for exclusion processes with conductances in random environments. (English) Zbl 1196.60161

Summary: Fix a function \(W: \mathbb R^d \to \mathbb R\) such that \(W(x_1, \dots, x_d) = \sum^d_{k=1} W_k (x_k)\), where \(d \geq 1\), and each function \(W_k : \mathbb R \to \mathbb R\) is strictly increasing, right continuous with left limits. We prove the equilibrium fluctuations for exclusion processes with conductances, induced by \(W\), in random environments, when the system starts from an equilibrium measure. The asymptotic behavior of the empirical distribution is governed by the unique solution of a stochastic differential equation taking values in a certain nuclear Fréchet space.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
60F05 Central limit and other weak theorems
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)

References:

[1] Ethier, S.; Kurtz, T., Markov processes: characterization and convergence, (Wiley Series in Prob. and Math. Stat. (1986)) · Zbl 1089.60005
[2] Faggionato, A., Bulk diffusion of 1D exclusion process with bond disorder, Markov Process. Related Fields, 13, 519-542 (2007) · Zbl 1144.60058
[3] Faggionato, A., Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit, Electron. J. Probab., 13, 2217-2247 (2008) · Zbl 1189.60172
[4] Faggionato, A.; Jara, M.; Landim, C., Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances, Probab. Theory Related Fields, 144, 633-667 (2009) · Zbl 1169.60326
[5] Franco, T.; Landim, C., Exclusion processes with conductances—hydrodynamic limit of gradient exclusion processes with conductances, Arch. Ration. Mech. Anal., 195, 409-439 (2010) · Zbl 1192.82062
[6] Gel’fand, I. M.; Vilenkin, N. Ya., Generalized Functions—Vol. 4 (1964), Academic Press: Academic Press New York · Zbl 0136.11201
[7] Gonçalves, P.; Jara, M., Scaling limits for gradient systems in random environment, J. Stat. Phys., 131, 691-716 (2008) · Zbl 1144.82043
[8] M. Jara, Current and density fluctuations for interacting particle systems with anomalous diffusive behavior. arXiv:0901.0229; M. Jara, Current and density fluctuations for interacting particle systems with anomalous diffusive behavior. arXiv:0901.0229
[9] Jara, M.; Landim, C., Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder, Ann. Inst. H. Poincaré Probab. Statist., 44, 341-361 (2008) · Zbl 1195.60124
[10] Kallianpur, G.; Perez-Abreu, V., Stochastic evolution equations driven by nuclear-space-valued martingale, Appl. Math. Optim., 17, 237-272 (1988) · Zbl 0643.60049
[11] Kipnis, C.; Landim, C., Scaling limits of interacting particle systems, (Grundlehren der Mathematischen Wissenschaften, vol. 320 (1999), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0927.60002
[12] Mitoma, I., Tightness of probabilities on \(C([0, 1], S^\prime)\) and \(D([0, 1], S^\prime)\), Ann. Probab., 11, 989-999 (1983) · Zbl 0527.60004
[13] Papanicolaou, G.; Varadhan, S. R.S., Boundary value problems with rapidly oscillating random coefficients, (Seria Coll. Math. Soc. Janos Bolyai, vol. 27 (1979), North-Holland) · Zbl 1316.35306
[14] Piatnitski, A.; Remy, E., Homogenization of elliptic difference operators, SIAM J. Math. Anal., 33, 53-83 (2001) · Zbl 1097.39501
[15] A.B. Simas, F.J. Valentim, \(W\) arXiv:0911.4177v1.2009; A.B. Simas, F.J. Valentim, \(W\) arXiv:0911.4177v1.2009
[16] F.J. Valentim, Hydrodynamic limit of gradient exclusion processes with conductance on \(\mathbb{Z}^d\) arXiv:0903.4993v1.2009; F.J. Valentim, Hydrodynamic limit of gradient exclusion processes with conductance on \(\mathbb{Z}^d\) arXiv:0903.4993v1.2009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.