×

Scaling limits for gradient systems in random environment. (English) Zbl 1144.82043

Summary: It is well known that the hydrodynamic limit of an interacting particle system satisfying a gradient condition (such as the zero-range process or the symmetric simple exclusion process) is given by a possibly non-linear parabolic equation and the equilibrium fluctuations from this limit are given by a generalized Ornstein-Uhlenbeck process.
We prove that in the presence of a symmetric random environment, these scaling limits also hold for almost every choice of the random environment, with an homogenized diffusion coefficient that does not depend on the realization of the random environment.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics

References:

[1] Braess, D.: Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001) · Zbl 0976.65099
[2] Chang, C.C.: Equilibrium fluctuations of gradient reversible particle systems. Probab. Theory Relat. Fields 100(3), 269–283 (1994) · Zbl 0810.60093 · doi:10.1007/BF01193701
[3] Faggionato, A.: Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Relat. Fields 13(3), 519–542 (2007) · Zbl 1144.60058
[4] Faggionato, A., Martinelli, F.: Hydrodynamic limit of a disordered lattice gas. Probab. Theory Relat. Fields 127(4), 535–608 (2003) · Zbl 1052.60083 · doi:10.1007/s00440-003-0305-z
[5] Faggionato, A., Jara, M., Landim, C.: Hydrodynamic limit of a one-dimensional subdiffusive exclusion process with random conductances. Probab. Theory Relat. Fields (2008, in press) · Zbl 1169.60326
[6] Ferrari, P.A., Presutti, E., Vares, M.E.: Nonequilibrium fluctuations for a zero range process. Ann. Inst. H. Poincaré Probab. Stat. 24(2), 237–268 (1988) · Zbl 0653.60099
[7] Fritz, J.: Hydrodynamics in a symmetric random medium. Commun. Math. Phys. 125(1), 13–25 (1989) · Zbl 0682.76001 · doi:10.1007/BF01217766
[8] Gonçalves, P., Landim, C., Toninelli, C.: Hydrodynamic limit for a particle system with degenerate rates. Preprint. Available online at http://arxiv.org/abs/0704.2242 · Zbl 1196.60163
[9] Guo, M., Papanicolaou, G., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118(1), 31–59 (1988) · Zbl 0652.60107 · doi:10.1007/BF01218476
[10] Jara, M., Landim, C.: Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Probab. Stat. (2008, in press) · Zbl 1195.60124
[11] Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, New York (1999) · Zbl 0927.60002
[12] Mitoma, I.: Tightness of probabilities on \(C([0,1];{\mathcal{S}}')\) and \(D([0,1];{\mathcal{S}}')\) . Ann. Probab. 11(4), 989–999 (1983) · Zbl 0527.60004 · doi:10.1214/aop/1176993447
[13] Olla, S., Siri, P.: Homogenization of a bond diffusion in a locally ergodic random environment. Stoch. Process. Appl. 109(2), 317–326 (2004) · Zbl 1075.60129 · doi:10.1016/j.spa.2003.10.009
[14] Piatnitski, A., Remy, E.: Homogenization of elliptic difference operators. SIAM J. Math. Anal. 33(1), 53–83 (2001) · Zbl 1097.39501 · doi:10.1137/S003614100033808X
[15] Quastel, J.: Diffusion of color in the simple exclusion process. Commun. Pure Appl. Math. 45(6), 623–679 (1992) · Zbl 0769.60097 · doi:10.1002/cpa.3160450602
[16] Quastel, J.: Bulk diffusion in a system with site disorder. Ann. Probab. 34(5), 1990–2036 (2006) · Zbl 1104.60066 · doi:10.1214/009117906000000322
[17] Stroock, D., Zheng, W.: Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Stat. 33(5), 619–649 (1997) · Zbl 0885.60065 · doi:10.1016/S0246-0203(97)80107-0
[18] Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. II. In: Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Sanda/Kyoto, 1990). Pitman Res. Notes Math. Ser., vol. 283, pp. 75–128. Longman Sci. Tech., Harlow (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.