×

\(P\)-spaces and an unconditional closed graph theorem. (English) Zbl 1196.26004

For a completely regular space \(X\) let \(C(X)\), \(U(X)\) and \(B_1(X)\) denote the sets of all respectively continuous real-valued functions, real-valued functions with a closed graph and real-valued functions of the first Baire class. The main result of this paper asserts that \(X\) is a \(P\)-space (that is, every \(G_{\delta}\)-subset of \(X\) is open) if and only if \(U(X)=C(X)\) if and only if \(U(X)=B_1(X)\). Some immediate consequences of this result are presented. In particular, if \(X\) is perfectly normal or first countable or locally compact, then there exist discontinuous functions on \(X\) with a closed graph.

MSC:

26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
54C30 Real-valued functions in general topology
54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.)
54C10 Special maps on topological spaces (open, closed, perfect, etc.)
Full Text: DOI

References:

[1] Baggs, I., (1974). Functions with a closed graph, Proc. Amer. Math. Soc., 43, 2, 439–442. DOI: 10.2307/2038910 · Zbl 0281.54005 · doi:10.1090/S0002-9939-1974-0334132-8
[2] Baggs, I., (1989). A regular space on which every real-valued function with a closed graph is constant, Can. Math. Bull., 32, 417–424. · Zbl 0668.54009 · doi:10.4153/CMB-1989-060-3
[3] Baggs, I., (1989). Nowhere dense sets and real-valued functions with closed graphs, Int. J. Math. Math. Sci., 12, 1, 1–8. DOI: 10.1155/S0161171289000013 · Zbl 0684.54009 · doi:10.1155/S0161171289000013
[4] Beattie, R. and Butzmann, H.-P., (2002). Convergence structures and applications to functional analysis, Kluwer Academic Publishers, Dortrecht. · Zbl 1246.46003
[5] Borsik, J., (2002). Sums, differences, products and quotients of closed graph functions, Tatra Mt. Math. Publ., 24, 117–123. · Zbl 1029.54021
[6] Borsik, J.; Doboš, J. and Repický, M., (1999/2000). Sums of quasicontinouos functions with closed graphs, Real Anal. Exchange, 25, 679–690.
[7] Doboš, J., (1985). On the set of points of discontinuity for functions with closed graphs, Cas. Pěst. Mat., 110, 60–68. · Zbl 0581.54008
[8] Dow, A., (1983). On F-spaces and F’-spaces, Pacific J. Math., 108, 275–284. · doi:10.2140/pjm.1983.108.275
[9] Engelking, R., (1989). General Topology, Helderman-Verlag, Berlin. · Zbl 0684.54001
[10] Fuller, R. V., (1968). Relations among continuous and various non-continuous functions, Pacific J. Math., 25, 495–509. · Zbl 0165.25304 · doi:10.2140/pjm.1968.25.495
[11] Gillman, L. and Henriksen, M., (1954). Concerning rings of continuous functions, Trans. Amer. Math. Soc., 77, 2, 340–362. DOI: 10.2307/1990875 · Zbl 0058.10003 · doi:10.1090/S0002-9947-1954-0063646-5
[12] Gillman, L. and Jerison, M., (1976). Rings of Continuous Functions, Springer-Verlag, Berlin. · Zbl 0327.46040
[13] Grant, D. L., (1977). Topological groups which satisfy an open mapping theorem, Pacific J. Math., 68, 411–423. · Zbl 0375.22002 · doi:10.2140/pjm.1977.68.411
[14] Husain, T., (1968). On a Closed Graph Theorem for Topological Groups, Proc. Japan Acad., 44, 6, 446–448. DOI: 10.3792/pja/1195521147 · Zbl 0164.34202 · doi:10.3792/pja/1195521147
[15] Iséki, K., (1958). A Characterisation of P-spaces, Proc. Japan Acad., 34, 7, 418–419. DOI: 10.3792/pja/1195524602 · Zbl 0084.33202 · doi:10.3792/pja/1195524602
[16] Kalenda, O. and Spurny, J., (2005). Extending Baire-one functions on topolgical spaces, Topology Appl., 149, 1–3, 195–216. DOI: 10.1016/j.topol.2004.09.007 · Zbl 1075.54011 · doi:10.1016/j.topol.2004.09.007
[17] Kirchheim, B., (1992/93). Baire one star functions, Real Anal. Exchange, 18, 385–389. · Zbl 0853.54018
[18] Kunen, K., (1989). RigID P-spaces, Fund. Math., 133, 59–65. · Zbl 0781.54024
[19] Kuratowski, K., (1933). Sur les théorèmes topologiques de la théorie des fonctions de variables réelles, C. R. Acad. Sci. Paris, 197, 19–20. · JFM 59.0888.04
[20] Luxemburg, W. A. J. and Zaanen, A. C., (1971). Riesz Spaces I, North-Holland, Amsterdam. · Zbl 0231.46014
[21] Mauldin, R. D., (1974). Baire Functions, Borel Sets, and Ordinary Function Systems, Adv. Math., 12, 4, 418–450. DOI: 10.1016/S0001-8708(74)80011-3 · Zbl 0278.26005 · doi:10.1016/S0001-8708(74)80011-3
[22] Moors, W. B., (2002). Closed graph theorems and Baire spaces, New Zealand J. Math., 31, 55–62. · Zbl 1009.54038
[23] Nakano, H., (1941). Über das System aller stetigen Funktionen auf einen topologischen Raum, Proc. Imp. Acad. Tokyo, 17, 308–310. · Zbl 0060.26508 · doi:10.3792/pia/1195578669
[24] Ohno, T., (1985). On the Baire order problem for a linear lattice of functions, Fund. Math., 125, 209–216. · Zbl 0589.54026
[25] Onuchic, N., (1957). On two properties of P-spaces, Port. Math., 16, 37–39. · Zbl 0083.17501
[26] Osba, E. A. and Henriksen, M., (2004). Essential P-spaces: a generalization of door spaces, Comment. Math. Univ. Carolinae, 45, 509–518. · Zbl 1100.54024
[27] Piotrowski, Z. and Szymański, A., (1988). Closed graph theorem: Topological approach, Rend. Circ. Mat. Palermo, Ser. II, 37, 1, 88–99. DOI: 10.1007/BF02844269 · Zbl 0672.54009 · doi:10.1007/BF02844269
[28] Raphael, R. and Woods, R. G., (2006). On RG-spaces and the regularity degree, Appl. Gen. Topol., 7, 73–101. · Zbl 1145.54034
[29] Shatery, H. R. and Zafarani, J., (2004/2005). The equality between Borel and Baire classes, Real Anal. Exchange, 30, 373–384. · Zbl 1074.26003
[30] Tucker, C. T., (1984). Pointwise and order convergence for spaces of continuous functions and spaces of Baire functions, Czech. Math. J., 34, (109), 562–569. · Zbl 0584.46016
[31] Wilansky, A., (1964). Functional analysis, Blaisdell Publishing Company, New York. · Zbl 0136.10603
[32] Wilhelm, M., (1979). Relations among some closed graph and open mapping theorems, Colloq. Math., 42, 387–394. · Zbl 0445.54004
[33] Wilhelm, M., (1979). On closed graph theorems in topological spaces and groups, Fund. Math., 104, 85–95. · Zbl 0424.54003
[34] Zhong, S.; Li, R. and Won, S. Y., (2008). An improvement of a recent closed graph theorem, Topology Appl., 155, 15, 1726–1729. DOI: 10.1016/j.topol.2008.05.012 · Zbl 1163.46002 · doi:10.1016/j.topol.2008.05.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.