Skip to main content
Log in

P-spaces and an unconditional closed graph theorem

P-espacios y un teorema incondicional de gráfica cerrada

  • Published:
RACSAM - Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

Let X be a completely regular (Tychonoff) space, and let C(X), U(X), and B 1(X) denote the sets of all real-valued functions on X that are continuous, have a closed graph, and of the first Baire class, respectively.

We prove that U(X) = C(X) if and only if X is a P-space (i.e., every G δ -subset of X is open) if and only if B 1(X = U(X). This extends a list of equivalences obtained earlier by Gillman and Henriksen, Onuchic, and Iséki. The first equivalence can be regarded as an unconditional closed graph theorem; it implies that if X is perfectly normal or first countable (e.g., metrizable), or locally compact, then there exist discontinuous functions on X with a closed graph. This complements earlier results by Doboš and Baggs on discontinuity of closed graph functions.

Resumen

Sea X un espacio completamente regular (Tychonoff). Por C(X), U(X) y B 1(X) se denotan los conjuntos de funciones reales definIDas en X que son continuas, que tienen gráfica cerrada y que son de primera clase de Baire, respectivamente. Se prueba que U(X) = C(X) si y sólo si X es un P espacio (es decir que cada subconjunot P-space (i.e., every G δ de X es abierto) o si y sólo si B 1(X = U(X) . Estos resultados extienden una relación de equivalencias obtenIDas por Gillman y Henriksen, Onuchic e Iséki. La primera equivalencia es un teorema incondicional de gráfica cerrada; implica que si X es perfectamente normal o cumple el primer axioma de numerabilIDad (por ejemplo si es metrizable), o es localmente compacto, entonces existen funciones discontinuas en X con gráfica cerrada. Así se complementan resultados obtenIDos por Dobos y Bags sobre discontinuIDad de funciones con gráfica cerrada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baggs, I., (1974). Functions with a closed graph, Proc. Amer. Math. Soc., 43, 2, 439–442. DOI: 10.2307/2038910

    Article  MATH  MathSciNet  Google Scholar 

  2. Baggs, I., (1989). A regular space on which every real-valued function with a closed graph is constant, Can. Math. Bull., 32, 417–424.

    MATH  MathSciNet  Google Scholar 

  3. Baggs, I., (1989). Nowhere dense sets and real-valued functions with closed graphs, Int. J. Math. Math. Sci., 12, 1, 1–8. DOI: 10.1155/S0161171289000013

    Article  MATH  MathSciNet  Google Scholar 

  4. Beattie, R. and Butzmann, H.-P., (2002). Convergence structures and applications to functional analysis, Kluwer Academic Publishers, Dortrecht.

    MATH  Google Scholar 

  5. Borsik, J., (2002). Sums, differences, products and quotients of closed graph functions, Tatra Mt. Math. Publ., 24, 117–123.

    MATH  MathSciNet  Google Scholar 

  6. Borsik, J.; Doboš, J. and Repický, M., (1999/2000). Sums of quasicontinouos functions with closed graphs, Real Anal. Exchange, 25, 679–690.

    MathSciNet  Google Scholar 

  7. Doboš, J., (1985). On the set of points of discontinuity for functions with closed graphs, Cas. Pěst. Mat., 110, 60–68.

    MATH  Google Scholar 

  8. Dow, A., (1983). On F-spaces and F'-spaces, Pacific J. Math., 108, 275–284.

    MATH  MathSciNet  Google Scholar 

  9. Engelking, R., (1989). General Topology, Helderman-Verlag, Berlin.

    MATH  Google Scholar 

  10. Fuller, R. V., (1968). Relations among continuous and various non-continuous functions, Pacific J. Math., 25, 495–509.

    MATH  MathSciNet  Google Scholar 

  11. Gillman, L. and Henriksen, M., (1954). Concerning rings of continuous functions, Trans. Amer. Math. Soc., 77, 2, 340–362. DOI: 10.2307/1990875

    MATH  MathSciNet  Google Scholar 

  12. Gillman, L. and Jerison, M., (1976). Rings of Continuous Functions, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  13. Grant, D. L., (1977). Topological groups which satisfy an open mapping theorem, Pacific J. Math., 68, 411–423.

    MATH  MathSciNet  Google Scholar 

  14. Husain, T., (1968). On a Closed Graph Theorem for Topological Groups, Proc. Japan Acad., 44, 6, 446–448. DOI: 10.3792/pja/1195521147

    Article  MATH  MathSciNet  Google Scholar 

  15. Iséki, K., (1958). A Characterisation of P-spaces, Proc. Japan Acad., 34, 7, 418–419. DOI: 10.3792/pja/1195524602

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalenda, O. and Spurny, J., (2005). Extending Baire-one functions on topolgical spaces, Topology Appl., 149, 1–3, 195–216. DOI: 10.1016/j.topol.2004.09.007

    Article  MATH  MathSciNet  Google Scholar 

  17. Kirchheim, B., (1992/93). Baire one star functions, Real Anal. Exchange, 18, 385–389.

    MathSciNet  Google Scholar 

  18. Kunen, K., (1989). RigID P-spaces, Fund. Math., 133, 59–65.

    MATH  MathSciNet  Google Scholar 

  19. Kuratowski, K., (1933). Sur les théorèmes topologiques de la théorie des fonctions de variables réelles, C. R. Acad. Sci. Paris, 197, 19–20.

    MATH  Google Scholar 

  20. Luxemburg, W. A. J. and Zaanen, A. C., (1971). Riesz Spaces I, North-Holland, Amsterdam.

    MATH  Google Scholar 

  21. Mauldin, R. D., (1974). Baire Functions, Borel Sets, and Ordinary Function Systems, Adv. Math., 12, 4, 418–450. DOI: 10.1016/S0001-8708(74)80011-3

    Article  MATH  MathSciNet  Google Scholar 

  22. Moors, W. B., (2002). Closed graph theorems and Baire spaces, New Zealand J. Math., 31, 55–62.

    MATH  MathSciNet  Google Scholar 

  23. Nakano, H., (1941). Über das System aller stetigen Funktionen auf einen topologischen Raum, Proc. Imp. Acad. Tokyo, 17, 308–310.

    Article  MATH  MathSciNet  Google Scholar 

  24. Ohno, T., (1985). On the Baire order problem for a linear lattice of functions, Fund. Math., 125, 209–216.

    MATH  MathSciNet  Google Scholar 

  25. Onuchic, N., (1957). On two properties of P-spaces, Port. Math., 16, 37–39.

    MATH  MathSciNet  Google Scholar 

  26. Osba, E. A. and Henriksen, M., (2004). Essential P-spaces: a generalization of door spaces, Comment. Math. Univ. Carolinae, 45, 509–518.

    MATH  Google Scholar 

  27. Piotrowski, Z. and Szymański, A., (1988). Closed graph theorem: Topological approach, Rend. Circ. Mat. Palermo, Ser. II, 37, 1, 88–99. DOI: 10.1007/BF02844269

    Article  MATH  Google Scholar 

  28. Raphael, R. and Woods, R. G., (2006). On RG-spaces and the regularity degree, Appl. Gen. Topol., 7, 73–101.

    MATH  MathSciNet  Google Scholar 

  29. Shatery, H. R. and Zafarani, J., (2004/2005). The equality between Borel and Baire classes, Real Anal. Exchange, 30, 373–384.

    MathSciNet  Google Scholar 

  30. Tucker, C. T., (1984). Pointwise and order convergence for spaces of continuous functions and spaces of Baire functions, Czech. Math. J., 34, (109), 562–569.

    Google Scholar 

  31. Wilansky, A., (1964). Functional analysis, Blaisdell Publishing Company, New York.

    MATH  Google Scholar 

  32. Wilhelm, M., (1979). Relations among some closed graph and open mapping theorems, Colloq. Math., 42, 387–394.

    MATH  MathSciNet  Google Scholar 

  33. Wilhelm, M., (1979). On closed graph theorems in topological spaces and groups, Fund. Math., 104, 85–95.

    MATH  MathSciNet  Google Scholar 

  34. Zhong, S.; Li, R. and Won, S. Y., (2008). An improvement of a recent closed graph theorem, Topology Appl., 155, 15, 1726–1729. DOI: 10.1016/j.topol.2008.05.012

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Wójtowicz.

Additional information

Submitted by Manuel Valdivia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wójtowicz, M., Sieg, W. P-spaces and an unconditional closed graph theorem. Rev. R. Acad. Cien. Serie A. Mat. 104, 13–18 (2010). https://doi.org/10.5052/RACSAM.2010.03

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.5052/RACSAM.2010.03

Keywords

Mathematics Subject Classifications

Navigation