×

Vacuum orbit and spontaneous symmetry breaking in hyperbolic sigma-models. (English) Zbl 1194.81144

Summary: We present a detailed study of quantized noncompact, nonlinear \(\text{SO}(1,N)\) sigma-models in arbitrary space-time dimensions \(D \geq 2\), with the focus on issues of spontaneous symmetry breaking of boost and rotation elements of the symmetry group. The models are defined on a lattice both in terms of a transfer matrix and by an appropriately gauge-fixed Euclidean functional integral.
The main results in all dimensions \(\geq 2\) are:
(i) on a finite lattice the systems have infinitely many non-normalizable ground states transforming irreducibly under a nontrivial representation of \(\text{SO}(1,N)\);
(ii) the \(\text{SO}(1,N)\) symmetry is spontaneously broken. For \(D=2\) this shows that the systems evade the Mermin–Wagner theorem. In this case in addition:
(iii) Ward identities for the Noether currents are derived to verify numerically the absence of explicit symmetry breaking;
(iv) numerical results are presented for the two-point functions of the spin field and the Noether current as well as a new order parameter;
(v) in a large \(N\) saddle-point analysis the dynamically generated squared mass is found to be negative and of order \(1/(V\ln V)\) in the volume, the 0-component of the spin field diverges as \(\sqrt {\ln V}\), while SO\((1,N)\) invariant quantities remain finite.

MSC:

81T10 Model quantum field theories
81R40 Symmetry breaking in quantum theory

Software:

RANLUX

References:

[1] Amit, D.; Davies, A., Symmetry breaking in the non-compact sigma model, Nucl. Phys. B, 225, 221 (1983)
[2] Cohen, Y.; Rabinovici, E., A study of the non-compact non-linear sigma-model: A search for dynamical realizations of non-compact symmetries, Phys. Lett. B, 124, 371 (1983)
[3] Gomes, M.; Ha, Y. K., Noncompact sigma model and dynamical mass generation, Phys. Lett. B, 145, 235 (1984)
[4] Ha, Y. K., Noncompact symmetries in field theories with indefinite metric, Nucl. Phys. B, 256, 687 (1985)
[5] Morozumi, T.; Nojiri, S., An analysis of noncompact nonlinear sigma models, Prog. Theor. Phys., 75, 677 (1986)
[6] Gomes, M.; Ha, Y. K., Dynamical gauge boson in \(SU(N, 1)\)-type \(σ\) models, Phys. Rev. Lett., 58, 2390 (1987)
[7] van Holten, J. W., Quantum noncompact sigma models, J. Math. Phys., 28, 1420 (1987)
[8] Brunini, S. A.; Gomes, M.; da Silva, A. J., Remarks on noncompact sigma models, Phys. Rev. D, 38, 706 (1988)
[9] B. DeWitt, Nonlinear sigma-models in four dimensions as a toy model for quantum gravity, in: Proceedings, Geometrical and Algebraic Aspects of Nonlinear Field Theory, Amalfi 1988; B. DeWitt, Nonlinear sigma-models in four dimensions as a toy model for quantum gravity, in: Proceedings, Geometrical and Algebraic Aspects of Nonlinear Field Theory, Amalfi 1988
[10] de Lyra, J.; DeWitt, B.; Foong, S.; Gallivan, T.; Harrington, R.; Kapulkin, A.; Myers, E.; Polchinski, J., The quantized \(O(1, 2) / O(2) \times Z_2\) sigma model has no continuum limit in four dimensions: 2. Numerical simulations, Phys. Rev. D, 46, 2538 (1992)
[11] Niedermaier, M.; Samtleben, H., An algebraic bootstrap for dimensionally reduced gravity, Nucl. Phys. B, 579 (2000) · Zbl 0992.83024
[12] Wegner, F., The mobility edge problem: continuous symmetry and a conjecture, Z. Phys. B, 35, 207 (1979)
[13] Houghten, A.; Jevicki, A.; Kenway, R.; Pruisken, A., Noncompact sigma-models and the existence of a mobility edge in disordered electronic systems near two dimensions, Phys. Rev. Lett., 45, 394 (1980)
[14] Hikami, S., Anderson localization in a nonlinear sigma-model representation, Phys. Rev. B, 24, 2671 (1981)
[15] Efetov, K. B., Supersymmetry and theory of disordered metals, Adv. Phys., 32, 53 (1983)
[16] Efetov, K. B., Supersymmetry in Disorder and Chaos (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0990.82501
[17] Coleman, S., There are no Goldstone bosons in two dimensions, Commun. Math. Phys., 31, 259 (1973) · Zbl 1125.81321
[18] Niedermaier, M.; Seiler, E., Nonamenability and spontaneous symmetry breaking—the hyperbolic spin chain · Zbl 1088.82007
[19] Hasenfratz, P., Perturbation theory and zero modes in \(O(N)\) lattice sigma-models, Phys. Lett. B, 141, 385 (1984)
[20] Patrascioiu, A.; Seiler, E., Does conformal quantum field theory describe the continuum lmits of 2F spin models with continuous symmetry?, Phys. Lett. B, 417, 123 (1998)
[21] Spencer, T.; Zirnbauer, M. R., Spontaneous symmetry breaking of a hyperbolic sigma model in three dimensions · Zbl 1102.81047
[22] Mermin, D.; Wagner, H., Absence of ferromagnetism or antiferromagnetism in one or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., 17, 1133 (1966)
[23] Dobrushin, R. L.; Shlosman, S. B., Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Commun. Math. Phys., 42, 31 (1975)
[24] Pfister, C.-E., One the symmetry of the Gibbs states in two-dimensional lattice systems, Commun. Math. Phys., 79, 181 (1981)
[25] Vilenkin, N.; Klimyk, A., Representations of Lie Groups and Special Functions (1993), Kluwer: Kluwer Dordrecht · Zbl 0809.22001
[26] Grosche, C.; Steiner, F., The path integral on the pseudosphere, Ann. Phys., 182, 120 (1988) · Zbl 0638.58003
[27] Alonso, M.; Pogosyan, G.; Wolf, K., Wigner functions for curved spaces I: on hyperboloids · Zbl 1060.81044
[28] Kato, T., Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups, (Gohberg, I.; Kac, M., Topics in Functional Analysis (1978), Academic Press: Academic Press New York), 185-195 · Zbl 0461.47018
[29] Neidhardt, H.; Zagrebnov, V. A., Trotter-Kato product formula and operator-norm concergence, Commun. Math. Phys., 2, 05, 129 (1999) · Zbl 0949.47019
[30] Braverman, M.; Milatovic, O.; Shubin, M., Essential self-adjointness of Schrödinger type operators on manifolds, Russian Math. Surveys, 57, 641 (2002) · Zbl 1052.58027
[31] Milatovic, O., The form sum and the Friedrichs extension of Schrödinger-type operators on Riemannina manifolds, Proc. Amer. Math. Soc., 132, 147 (2004) · Zbl 1038.58025
[32] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, vol. 4 (1978), Academic Press: Academic Press New York · Zbl 0401.47001
[33] Simon, B.; Yaffe, L., Rigorous perimeter law upper bound on Wilson loops, Phys. Lett. B, 115, 115 (1982)
[34] M. Lüscher, Absence of spontaneous symmetry breaking in Hamiltonian lattice gauge theories, preprint 1979, unpublished; M. Lüscher, Absence of spontaneous symmetry breaking in Hamiltonian lattice gauge theories, preprint 1979, unpublished
[35] Simon, B., Functional Integration and Quantum Physics (1979), Academic Press: Academic Press New York · Zbl 0434.28013
[36] Schaefer, J., Covariant path integral on hyperbolic surfaces, J. Math. Phys., 38, 11 (1997) · Zbl 0892.58011
[37] M. Niedermaier, E. Seiler, in preparation; M. Niedermaier, E. Seiler, in preparation
[38] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, vol. 1 (1972), Academic Press: Academic Press New York, London · Zbl 0242.46001
[39] Lax, P., Functional Analysis (2003), Wiley · Zbl 1088.46001
[40] Paterson, A., Amenability (1988), American Mathematical Society: American Mathematical Society Providence · Zbl 0648.43001
[41] Eymard, P., Moyénnes invariantes et représentations unitaires, Lecture Notes in Mathematics, vol. 300 (1972), Springer-Verlag: Springer-Verlag Berlin · Zbl 0249.43004
[42] Bekka, M. E.B., Amenable unitary representations of locally compact groups, Invent. Math., 100, 383 (1990) · Zbl 0702.22010
[43] Pestov, V., On some questions of Eymard and Bekka concerning amenability of homogeneous spaces and induced representations, C. R. Math. Acad. Sci. Soc. R. Canada, 25, 76 (2003) · Zbl 1092.43003
[44] Osterwalder, K.; Schrader, R., Axioms for Euclidean Green’s functions 2, Commun. Math. Phys., 42, 281 (1975) · Zbl 0303.46034
[45] Glimm, J.; Jaffe, A., Quantum Physics (1987), Springer: Springer Berlin
[46] Seiler, E., Gauge theories as a problem of constructive quantum field theory and statistical mechanics, (Lecture Notes in Physics, vol. 159 (1982), Springer: Springer Berlin)
[47] Schroer, B.; Swieca, J. A., Conformal transformations for quantized fields, Phys. Rev. D, 10, 480 (1974)
[48] Segal, I.; Kunze, R., Integrals and Operators (1978), Springer · Zbl 0373.28001
[49] Duncan, A.; Roskies, R., Variational estimates for spectra in lattice Hamiltonian theories, Phys. Rev. D, 31, 364 (1985)
[50] Duncan, A.; Roskies, R., Asymptotic scaling in Hamiltonian calculations of the O(3) sigma-model, Phys. Rev. D, 32, 3277 (1985)
[51] Lüscher, M., A portable high quality randum number generator for lattice field theory simulations, Comput. Phys. Commun., 79, 100 (1994) · Zbl 0879.65002
[52] Hubbard, J., Calculation of partition functions, Phys. Rev. Lett., 3, 77 (1959)
[53] Stratonovich, R. L., On a method of calculating quantum distribution functions, Sov. Phys. Dokl., 2, 416 (1958) · Zbl 0080.19804
[54] Kirch, M.; Manashov, A., Noncompact \(SL(2, R)\) spin chain
[55] Friedan, D., Ann. Phys. (N.Y.), 163, 318 (1985) · Zbl 0583.58010
[56] Bros, J.; Moschella, U., Two-point functions and quantum fields in de Sitter universe, Rev. Math. Phys., 8, 327 (1996) · Zbl 0858.53054
[57] Gradshteyn, I.; Ryzhik, I., Table of Integrals and Products (1980), Academic Press · Zbl 0521.33001
[58] J.P. Anker, P. Ostellari, The heat kernel on noncompact symmetric spaces, survey for IHP Meeting on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs, Paris, 2002; J.P. Anker, P. Ostellari, The heat kernel on noncompact symmetric spaces, survey for IHP Meeting on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs, Paris, 2002
[59] Warner, G., Harmonic Analysis on Semisimple Lie Groups I, II (1972), Springer: Springer Berlin · Zbl 0265.22021
[60] Terras, A., Harmonic Analysis on Symmetric Spaces and Applications I (1985), Springer: Springer Berlin · Zbl 0574.10029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.