×

Local behavior of \(p\)-harmonic Green’s functions in metric spaces. (English) Zbl 1191.31006

Authors’ abstract: We describe the behavior of \(p\)-harmonic Green functions near a singularity in metric measure spaces equipped with a doubling measure and supporting a Poincaré inequality.

MSC:

31C45 Other generalizations (nonlinear potential theory, etc.)
35J60 Nonlinear elliptic equations

References:

[1] Balogh, Z.M., Holopainen, I., Tyson, J.T.: Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups. Math. Ann. 324, 159–186 (2002) · Zbl 1014.22009 · doi:10.1007/s00208-002-0334-4
[2] Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. Houst. J. Math. 34, 1197–1211 (2008) · Zbl 1170.46032
[3] Björn, A., Marola, N.: Moser iteration for (quasi)minimizers on metric spaces. Manuscr. Math. 121, 339–366 (2006) · Zbl 1123.49032 · doi:10.1007/s00229-006-0040-8
[4] Björn, J.: Boundary continuity for quasiminimizers on metric spaces. Ill. J. Math. 46, 383–403 (2002) · Zbl 1026.49029
[5] Björn, J., MacManus, P., Shanmugalingam, N.: Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal. Math. 85, 339–369 (2001) · Zbl 1003.31004 · doi:10.1007/BF02788087
[6] Buser, P.: A note on the isoperimetric constant. Ann. Sci. Ec. Norm. Super. 15, 213–230 (1982) · Zbl 0501.53030
[7] Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Am. J. Math. 118, 1153–1196 (1996) · Zbl 0878.35020 · doi:10.1353/ajm.1996.0046
[8] Carathéodory, C.: Untersuchungen über die Grundlangen der thermodynamik. Math. Ann. 67, 355–386 (1909) · doi:10.1007/BF01450409
[9] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic, Orlando (1984) · Zbl 0551.53001
[10] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[11] Chow, W.L.: Über system von linearen partiellen differentialgleichungen erster Ordnug. Math. Ann. 117, 98–105 (1939) · JFM 65.0398.01 · doi:10.1007/BF01450011
[12] David, G., Semmes, S.: Fractured Fractals and Broken Dreams. Self-Similar Geometry Through Metric and Measure. In: Oxford Lecture Series in Mathematics and its Applications, vol. 7. The Clarendon Press, Oxford University Press, New York (1997) · Zbl 0887.54001
[13] Franchi, B., Hajłasz, P., Koskela, P.: Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier (Grenoble) 49, 1903–1924 (1999) · Zbl 0938.46037
[14] Garofalo, N., Marola, N.: Sharp capacitary estimates for rings in metric spaces. Houst. J. Math. (2009, in press) · Zbl 1211.30068
[15] Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996) · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[16] Garofalo, N., Nhieu, D.-M.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces. J. Anal. Math. 74, 67–97 (1998) · Zbl 0906.46026 · doi:10.1007/BF02819446
[17] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, 1–110 (2000)
[18] Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001) · Zbl 0985.46008
[19] Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998) · Zbl 0915.30018 · doi:10.1007/BF02392747
[20] Holopainen, I.: Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. A 1, Math. Diss. 74, 1–45 (1990) · Zbl 0698.31010
[21] Holopainen, I., Shanmugalingam, N.: Singular functions on metric measure spaces. Collect. Math. 53, 313–332 (2002) · Zbl 1039.31016
[22] Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53, 503–523 (1986) · Zbl 0614.35066 · doi:10.1215/S0012-7094-86-05329-9
[23] Kallunki, S., Shanmugalingam, N.: Modulus and continuous capacity. Ann. Acad. Sci. Fenn. Math. 26, 455–464 (2001) · Zbl 1002.31004
[24] Keith, S.: A differentiable structure for metric measure spaces. Adv. Math. 183, 271–315 (2004) · Zbl 1077.46027 · doi:10.1016/S0001-8708(03)00089-6
[25] Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12, 233–247 (2000) · Zbl 0962.46021 · doi:10.1023/A:1008601220456
[26] Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21, 367–382 (1996) · Zbl 0859.46023
[27] Kinnunen, J., Martio, O.: Choquet property for the Sobolev capacity in metric spaces. In: Proceedings on Analysis and Geometry (Novosibirsk, Akademgorodok, 1999), pp. 285–290. Sobolev, Novosibirsk (2000) · Zbl 0992.46023
[28] Kinnunen, J., Martio, O.: Sobolev space properties of superharmonic functions on metric spaces. Results Math. 44, 114–129 (2003) · Zbl 1042.31005
[29] Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscr. Math. 105, 401–423 (2001) · Zbl 1006.49027 · doi:10.1007/s002290100193
[30] Korte, R.: Geometric implications of the Poincaré inequality. Results Math. 50, 93–107 (2007) · Zbl 1146.46019 · doi:10.1007/s00025-006-0237-x
[31] Koskela, P., Shanmugalingam, N., Tuominen, H.: Removable sets for the Poincaré inequality on metric spaces. Indiana Univ. Math. J. 49, 333–352 (2000) · Zbl 0958.30008 · doi:10.1512/iumj.2000.49.1719
[32] Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 18(3), 43–77 (1963) · Zbl 0116.30302
[33] Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985) · Zbl 0578.32044 · doi:10.1007/BF02392539
[34] Rashevsky, P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. (Russian) 2, 83–94 (1938)
[35] Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976) · Zbl 0346.35030 · doi:10.1007/BF02392419
[36] Semmes, S.: Metric spaces and mappings seen at many scales. In: Gromov, M. (ed.) Metric Structures for Riemannian and Non-Riemannian Spaces (Appendix B). Progress in Mathematics. Birkhäuser, Boston (1999)
[37] Serrin, J.: Local behavior of solutions of quasilinear equations. Acta Math. 111, 243–302 (1964) · Zbl 0128.09101 · doi:10.1007/BF02391014
[38] Serrin, J.: Isolated singularities of solutions of quasilinear equations. Acta Math. 113, 219–240 (1965) · Zbl 0173.39202 · doi:10.1007/BF02391778
[39] Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000) · Zbl 0974.46038
[40] Shanmugalingam, N.: Harmonic functions on metric spaces. Ill. J. Math. 45, 1021–1050 (2001) · Zbl 0989.31003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.