×

Fat sets and pointwise boundary estimates for \(p\)-harmonic functions in metric spaces. (English) Zbl 1003.31004

Let \(X\) be a linear locally convex metric space and \(\mu\) be a doubling regular Borel measure on \(X\). Assume that \((X,\mu)\) admits a \((1,q_0)\) Poincaré inequality for some \(q_0\in [1,\infty)\). The main result of the paper says that a set \(E\subset X\) which is uniformly \(p\)-fat for some \(p> q_0\) is also uniformly \(q\)-fat for some \(q<p\). Here, uniform \(p\)-fatness means that the relative (w.r.t.\(B_{2r}(x)\)) \(p\)-capacities of \(B_r(x)\cap E\) and \(B_r(x)\) are uniformly bounded away from \(0\) for all \(x\in E\) and small \(r>0\). For first-order capacities this theorem extends an earlier result of J. Lewis [Trans. Am. Math. Soc. 308, 177-196 (1988; Zbl 0668.31002)] to a metric space setting. The proof follows P. Mikkonen’s technique [Ann. Acad. Sci. Fenn., Math., Diss. 104 (1996; Zbl 0860.35041)] and uses Wolff potentials rather than representation formulae associated with the Green functions. As a corollary, a Hardy-type inequality for Newtonian functions with zero boundary values for domains with uniformly fat complements is obtained.
In the course of the proof the following interesting characterization of Radon measures in the dual of the Newtonian space of functions on \(\Omega\subset X\) with zero boundary values, \(N_0^{1,p}(\Omega)^*\), is obtained: \(\nu \in N_0^{1,p}(\Omega)^*\) if, and only if, for some \(r>0\) the Wolff potential \(W_p^\nu(x,r)\) satisfies \(\int_\Omega W_p^\nu(x,r) \nu(dx) < \infty\). Other spin-offs are estimates for the solutions of the non-linear equation \(-\text{div}(|Du|^{p-2}Du) = \nu\in N_0^{1,p}(\Omega)^*\) along with estimates for the oscillation of \(p\)-harmonic functions and \(p\)-energy minimizers near a boundary point.

MSC:

31C45 Other generalizations (nonlinear potential theory, etc.)
31C15 Potentials and capacities on other spaces
35G30 Boundary value problems for nonlinear higher-order PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] [Bj] J. Björn,Boundary continuity for quasi-minimizers on metric spaces, Preprint (2000).
[2] [C] J. Cheeger,Differentiability of Lipschitz functions on measure spaces, Geom. Funct. Anal.9 (1999), 428–517. · Zbl 0942.58018 · doi:10.1007/s000390050094
[3] [FHK] B. Franchi, P. Hajłasz and P. Koskela,Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble)49 (1999), 1903–1924. · Zbl 0938.46037
[4] [HaK] P. Hajłasz and P. Koskela,Sobolev met Poincaré, Mem. Amer. Math. Soc.145 (2000).
[5] [HW] L. I. Hedberg and T. Wolff,Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble)33 (1983), 161–187. · Zbl 0508.31008
[6] [HKM] J. Heinonen, T. Kilpeläinen and O. Martio,Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993. · Zbl 0780.31001
[7] [HeK] J. Heinonen and P. Koskela,Quasiconformal maps in metric spaces with controlled geometry, Acta Math.181 (1998), 1–61. · Zbl 0915.30018 · doi:10.1007/BF02392747
[8] [KaSh] S. Kallunki and N. Shanmugalingam,Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. (to appear). · Zbl 1002.31004
[9] [KL] J. Kinnunen and V. Latvala,Lebesgue points for Sobolev functions on metric measure spaces, Preprint (2000). · Zbl 1037.46031
[10] [KM1] J. Kinnunen and O. Martio,The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math.21 (1996), 367–382. · Zbl 0859.46023
[11] [KM2] J. Kinnunen and O. Martio,Hardy’s inequalities for Sobolev functions, Math. Res. Lett.4 (1997), 489–500. · Zbl 0909.42014
[12] [KiSh] J. Kinnunen and N. Shanmugalingam,Quasi-minimizers on metric spaces, Preprint (1999). · Zbl 1006.49027
[13] [KMc] P. Koskela and P. MacManus,quasiconformal mappings and Sobolev spaces, Studia Math.131 (1998), 1–17. · Zbl 0918.30011
[14] [Ku] A. Kufner,Weighted Sobolev Spaces, Wiley, New York, 1985
[15] [L] J. Lewis,Uniformly fat sets, Trans. Amer. Math. Soc.308 (1988), 177–196. · Zbl 0668.31002 · doi:10.1090/S0002-9947-1988-0946438-4
[16] [LM] P. Lindqvist and O. Martio,Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math.155 (1985), 153–171. · Zbl 0607.35042 · doi:10.1007/BF02392541
[17] [Li] J.-L. Lions,Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969.
[18] [M1] V. Maz’ya.Regularity at the boundary of solutions of elliptic equations and conformal mapping, Dokl. Akad. Nauk SSSR150:6 (1963), 1297–1300 (in Russian); English transl.: Soviet Math. Dokl.4: 5 (1963), 1547–1551.
[19] [M2] V. Maz’ya,On the continuity at a boundary point of solutions of quasi-linear elliptic equations, Vestnik Leningrad. Univ.25: 13 (1970), 42–55 (in Russian); English transl.: Vestnik Leningrad Univ. Math.3 (1976), 225–242.
[20] [Mi] P. Mikkonen,On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn., Math. Dissertationes104 (1996). · Zbl 0860.35041
[21] [MV] V. Miklyukov and M. Vuorinen,Hardy’s inequality for W 0 1,p -functions on Riemannian manifolds, Proc. Amer. Math. Soc.127 (1999), 2745–2754. · Zbl 0946.58009 · doi:10.1090/S0002-9939-99-04849-2
[22] [Ru1] W. Rudin,Real and Complex Analysis, 3rd edn., McGraw-Hill, New York, 1987.
[23] [Ru2] W. Rudin,Functional Analysis, 2nd edn., McGraw-Hill, New York, 1991.
[24] [Se] S. Semmes,Finding curves on general spaces through quantitative, topology with applications to Sobolev and Poincaré inequalities. Selecta Math.2 (1996) 155–295. · Zbl 0870.54031 · doi:10.1007/BF01587936
[25] [Sh1] N. Shanmugalingam,Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana16 (2000), 243–279. · Zbl 0974.46038
[26] [Sh2] N. Shanmugalingam,Harmonic functions on metric spaces, Illinois J. Math. (to appear).
[27] [Wa] A. Wannebo,Hardy inequalities, Proc. Amer. Math. Soc.109 (1990), 85–95. · Zbl 0715.26009 · doi:10.1090/S0002-9939-1990-1010807-1
[28] [Wi] N. Wiener,The Dirichlet problem, J. Math. Phys.3 (1924), 127–146. · JFM 51.0361.01
[29] [Yo] K. Yosida,Functional Analysis, Springer-Verlag, Berlin-New York, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.