×

Analysis and active control of pressure-drop flow instabilities in boiling microchannel systems. (English) Zbl 1190.80039

Summary: Pressure-drop oscillations are one of the most severe dynamic instabilities for boiling flow especially in microchannel systems. This paper presents a systematic framework for the transient analysis and active control of microchannel flow oscillations at a system-level view. To quantify the upstream compressibility and the associated oscillatory transients in an experimental microchannel boiling system, a lumped oscillator model is derived from the momentum balance equation, and both analytical and numerical nonlinear parameter identification methods are proposed. The predictions from the flow oscillation model agree well with the experimental pressure-drop observations across a flow meter and a microchannel heat sink. Based on the identified nonlinear oscillator model, a virtual state observer is designed to estimate the mass flow acceleration from the mass flowrate measurement in the boiling channel. Then a family of state and dynamic output-feedback active flow controllers is developed and evaluated for the dynamic pressure-drop instability suppression. Further analysis and simulations show the flow oscillation amplitude can be regulated to whatever level is desired under certain conditions.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows
80-05 Experimental work for problems pertaining to classical thermodynamics
Full Text: DOI

References:

[1] Garimella, S. V.; Fleischer, A. S.; Murthy, J. Y.: Thermal challenges in next-generation electronic systems, IEEE trans. Compon. packag. Technol. 31, 801-815 (2008)
[2] Lee, J.; Mudawar, I.: Low-temperature two-phase microchannel cooling for high heat-flux thermal management of defense electronics, IEEE trans. Compon. packag. Technol. 32, 453-465 (2009)
[3] Webb, T. W.; Kiehne, T. M.; Haag, S. T.: System-level thermal management of pulsed loads on an all-electric ship, IEEE trans. Magn. 43, 469-473 (2007)
[4] Kandlikar, S. G.; Garimella, S.; Li, D.; Colin, S.; King, M. R.: Heat transfer and fluid flow in minichannels and microchannels, (2006)
[5] Kandlikar, S. G.; Kuan, W. K.; Willistein, D. A.: Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites, ASME J. Heat transfer 128, 389-396 (2006)
[6] Qu, W.; Mudawar, I.: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks, Int. J. Heat mass transfer 46, 2737-2753 (2003)
[7] Thome, J. R.: State-of-the-art overview of boiling and two-phase flows in microchannels, Heat transfer eng. 27, 4-19 (2006)
[8] Boure, J. A.; Bergles, A. E.; Tong, L. S.: Review of two-phase flow instability, Nucl. eng. Des. 25, 165-192 (1973)
[9] Kakac, S.; Bon, B.: A review of two-phase flow dynamic instabilities in tube boiling system, Int. J. Heat mass transfer 51, 399-433 (2008) · Zbl 1133.76050 · doi:10.1016/j.ijheatmasstransfer.2007.09.026
[10] Bergles, A. E.; Lienhard, J. H.; Kendall, G. E.; Griffith, P.: Boiling and evaporation in small diameter channels, Heat transfer eng. 24, 1840 (2003)
[11] Ozawa, M.; Umekawa, H.; Mishima, K.: CHF in oscillatory flow boiling channels, Chem. eng. Res. des. 79, 389-401 (2001)
[12] J. Yin, Modeling and Analysis of Multiphase Flow Instabilities, Ph.D. Thesis, Rensselaer Polytechnic Institute, 2004.
[13] Zhang, T. J.; Tong, T.; Peles, Y.; Prasher, R.: Ledinegg instability in microchannels, Int. J. Heat mass transfer 52, 5661-5674 (2009) · Zbl 1177.80071
[14] Cheng, P.; Wang, G.; Quan, X.: Recent work on boiling and condensation in microchannels, ASME J. Heat transfer 131, 043211-1-043211-5 (2009)
[15] Prasher, R. S.; Dirner, J.; Chang, J. -Y.; Myers, A.; Chau, D.; He, D.; Prstic, S.: Nusselt number and friction factor of staggered arrays of low aspect ratio micro-pin fins under cross-flow for water as fluid, ASME J. Heat transfer 129, 141-153 (2007)
[16] Wu, H. Y.; Cheng, P.: Visualization and measurements of periodic boiling in silicon microchannels, Int. J. Heat mass transfer 46, 2603-2614 (2003)
[17] Wu, H. Y.; Cheng, P.; Wang, H.: Pressure drop and flow boiling instabilities in silicon microchannel heat sinks, J. micromech. Microeng. 16, 2138-2146 (2006)
[18] Xu, J.; Zhou, J.; Gan, Y.: Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes, Energy convers. Manage. 46, 313-334 (2005)
[19] Huh, C.; Kim, J.; Kim, M. H.: Flow pattern transition instability during flow boiling in a single microchannel, Int. J. Heat mass transfer 50, 1049-1060 (2007)
[20] Kuo, C. -J.; Peles, Y.: Pressure effects on flow boiling instabilities in parallel microchannels, Int. J. Heat mass transfer 52, 271-280 (2009)
[21] Kosar, A.; Kuo, C. -J.; Peles, Y.: Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors, ASME J. Heat transfer 128, 251-260 (2006)
[22] Kuo, C. -J.; Peles, Y.: Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities, ASME J. Heat transfer 130, 072402-1-072402-10 (2008)
[23] Xu, J.; Liu, G.; Zhang, W.; Li, Q.; Wang, B.: Seed bubbles stabilize flow and heat transfer in parallel microchannels, Int. J. Multiphase flow 35, 773-790 (2009)
[24] Ozawa, M.; Akagawa, K.; Sakaguchi, T.; Tsukahara, T.; Fujii, T.: Flow instabilities in boiling channels – part 1. Pressure-drop oscillation, Bull. JSME 22, 1113-1118 (1979)
[25] Liu, H. T.; Kocak, H.; Kakac, S.: Dynamical analysis of pressure-drop type oscillations with a planar model, Int. J. Multiphase flow 21, 851-859 (1995) · Zbl 1135.76478 · doi:10.1016/0301-9322(95)00012-M
[26] Kakac, S.; Cao, L.: Analysis of convective two-phase flow instabilities in vertical and horizontal in-tube boiling systems, Int. J. Heat mass transfer 52, 3984-3993 (2009) · Zbl 1167.80337 · doi:10.1016/j.ijheatmasstransfer.2009.03.025
[27] Kaushal, R. S.; Parashar, D.: Advanced methods of mathematical physics, (2008) · Zbl 1173.00010
[28] Khalil, H. K.: Nonlinear systems, (2002) · Zbl 1003.34002
[29] Ogata, K.: Modern control engineering, (2008) · Zbl 0756.93060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.