×

Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers. (English) Zbl 1189.76020

Summary: An experimental study is performed on the vortex induced vibrations of a rigid flexibly mounted circular cylinder placed in a crossflow. The cylinder is allowed to oscillate in combined crossflow and in-line motions, and the ratio of the nominal in-line and transverse natural frequencies is varied systematically. Experiments were conducted on a smooth cylinder at subcritical Reynolds numbers between 15 000 and 60 000 and on a roughened cylinder at supercritical Reynolds numbers between 320 000 and 710 000, with a surface roughness equal to 0.23 % of the cylinder diameter. Strong qualitative and quantitative similarities between the subcritical and supercritical experiments are found, especially when the in-line natural frequency is close to twice the value of the crossflow natural frequency. In both Reynolds number regimes, the test cylinder may exhibit a ‘dual-resonant’ response, resulting in resonant crossflow motion at a frequency \(f_{v}\), near the Strouhal frequency, and resonant in-line motion at 2 \(f_{v}\). This dual resonance is shown to occur over a relatively wide frequency region around the Strouhal frequency, accompanied by stable, highly repeatable figure-eight cylinder orbits, as well as large third-harmonic components of the lift force. Under dual-resonance conditions, both the subcritical and the supercritical response is shown to collapse into a narrow parametric region in which the effective natural-frequency ratio is near the value 2, regardless of the nominal natural-frequency ratio. Some differences are noted in the magnitudes of forces and the cylinder response between the two different Reynolds number regimes, but the dual-resonant response and the resulting force trends are preserved despite the large Reynolds number difference.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76D17 Viscous vortex flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] DOI: 10.1016/S0167-6105(01)00213-6 · doi:10.1016/S0167-6105(01)00213-6
[2] Zdravkovich, Flow around Circular Cylinders, Volume1: Fundamentals (1997) · Zbl 0882.76004
[3] DOI: 10.1146/annurev.fluid.36.050802.122128 · Zbl 1125.74323 · doi:10.1146/annurev.fluid.36.050802.122128
[4] Raghavan, Fifth Conference on Bluff Body Wakes and Vortex-Induced Vibrations (2007)
[5] DOI: 10.1016/S0889-9746(88)90058-8 · doi:10.1016/S0889-9746(88)90058-8
[6] Vandiver, 25th International Conferenece on Offshore Mechanical and Arctic Engineering (2006)
[7] DOI: 10.1016/j.jfluidstructs.2008.11.005 · doi:10.1016/j.jfluidstructs.2008.11.005
[8] DOI: 10.1016/j.jfluidstructs.2005.07.014 · doi:10.1016/j.jfluidstructs.2005.07.014
[9] DOI: 10.1016/j.jfluidstructs.2006.04.006 · doi:10.1016/j.jfluidstructs.2006.04.006
[10] DOI: 10.1016/j.jfluidstructs.2005.07.010 · doi:10.1016/j.jfluidstructs.2005.07.010
[11] DOI: 10.1006/jfls.2000.0365 · doi:10.1006/jfls.2000.0365
[12] DOI: 10.1017/S0022112004008778 · Zbl 1163.76348 · doi:10.1017/S0022112004008778
[13] Dahl, Ninth International Conference on Flow-Induced Vibrations (2008)
[14] DOI: 10.2514/3.50855 · doi:10.2514/3.50855
[15] DOI: 10.1016/j.jfluidstructs.2006.04.019 · doi:10.1016/j.jfluidstructs.2006.04.019
[16] DOI: 10.1017/S0022112098001074 · Zbl 0967.76508 · doi:10.1017/S0022112098001074
[17] DOI: 10.1017/S0022112005005197 · Zbl 1108.76305 · doi:10.1017/S0022112005005197
[18] DOI: 10.1017/S0022112006000310 · Zbl 1103.74026 · doi:10.1017/S0022112006000310
[19] Boashash, Time Frequency Signal Analysis and Processing: A Comprehensive Reference (2003)
[20] Ding, Offshore Technology Conf erence (2004)
[21] Blevins, Flow Induced Vibration (1990)
[22] DOI: 10.1103/PhysRevLett.99.144503 · doi:10.1103/PhysRevLett.99.144503
[23] DOI: 10.1146/annurev.fl.16.010184.001211 · doi:10.1146/annurev.fl.16.010184.001211
[24] DOI: 10.1017/S0022112069000735 · doi:10.1017/S0022112069000735
[25] Achenback, J. Fluid Mech. 34 pp 525– (1968)
[26] Triantafyllou, International Conference on Ocean, Offshore and Arctic Engineering, OMAE’07 (2007)
[27] DOI: 10.1017/S0022112075002170 · doi:10.1017/S0022112075002170
[28] DOI: 10.1016/0167-6105(93)90030-R · doi:10.1016/0167-6105(93)90030-R
[29] DOI: 10.1017/S0022112083001913 · doi:10.1017/S0022112083001913
[30] DOI: 10.1016/j.jfluidstructs.2004.02.005 · doi:10.1016/j.jfluidstructs.2004.02.005
[31] DOI: 10.1115/1.2827228 · doi:10.1115/1.2827228
[32] Sarpkaya, J. Appl. Mech. 46 pp 241– (1979) · doi:10.1115/1.3424537
[33] DOI: 10.1017/S0022112061000950 · Zbl 0109.43702 · doi:10.1017/S0022112061000950
[34] Mukundan, International Conference on Ocean, Offshore and Arctic Engineering, OMAE’09 (2009)
[35] DOI: 10.1016/j.jweia.2007.06.015 · doi:10.1016/j.jweia.2007.06.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.