×

A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy. (English) Zbl 1173.35575

Summary: We consider the nonlinear viscoelastic equation \[ u_{tt}-\varDelta u+\int _0^t g(t-\tau)\varDelta u(\tau)\text d\tau+u_t= |u|^{p-1}u \quad \text{in }\varOmega \times (0,\infty) \] with Dirichlet boundary conditions. Under some appropriate assumptions on \(g\) and the initial data, a blow-up result with arbitrary positive initial energy is established for \(p< \frac{n}{n-2}\) (if \(n=1,2,\) then \(1<p<\infty \)).

MSC:

35L05 Wave equation
Full Text: DOI

References:

[1] Levine, H. A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5, 138-146 (1974) · Zbl 0243.35069
[2] Levine, H. A.; Serrin, J., Global nonexistence theorems for quasilinear evolution equation with dissipation, Arch. Ration. Mech. Anal., 137, 341-361 (1997) · Zbl 0886.35096
[3] Pucci, P.; Serrin, J., Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations, 150, 203-214 (1998) · Zbl 0915.35012
[4] Levine, H. A.; Todorova, G., Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proc. Amer. Math. Soc., 129, 793-805 (2001) · Zbl 0956.35087
[5] Todorova, G.; Vitillaro, E., Blow-up for nonlinear dissipative wave equations in \(R^n\), J. Math. Anal. Appl., 303, 1, 242-257 (2005) · Zbl 1065.35200
[6] Gazzola, F.; Squassina, M., Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 23, 2, 185-207 (2006) · Zbl 1094.35082
[7] Wang, Y., A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136, 3477-3482 (2008) · Zbl 1154.35064
[8] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Soriano, J. A., Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations, 2002, 1-14 (2002) · Zbl 0997.35037
[9] Messaoudi, S. A., Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260, 58-66 (2003) · Zbl 1035.35082
[10] Messaoudi, S. A., Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320, 2, 902-915 (2006) · Zbl 1098.35031
[11] Nobel, J. A.; Shea, D. F., frequency domain methods for Volterra equations, Adv. Math., 22, 278-304 (1976) · Zbl 0349.45004
[12] Hannsgen, K. B., Indirect abelian theorems and a linear Volterra equation, Trans. Amer. Math. Soc., 142, 539-555 (1969) · Zbl 0185.35801
[13] Georgiev, V.; Todorova, G., Existence of a solution of the wave equation with nonlinear damping and source term, J. Differential Equations, 109, 295-308 (1994) · Zbl 0803.35092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.