×

The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows. (English) Zbl 1188.34057

Summary: This manuscript reports numerical investigations about the relative abundance and structure of chaotic phases in autonomous dissipative flows, i.e. in continuous-time dynamical systems described by sets of ordinary differential equations. In the first half, we consider flows containing ”periodicity hubs”, which are remarkable points responsible for organizing the dynamics regularly over wide parameter regions around them. We describe isolated hubs found in two forms of Rössler’s equations and in Chua’s circuit, as well as surprising infinite hub cascades that we found in a polynomial chemical flow with a cubic nonlinearity. Hub cascades converge orderly to accumulation points lying on specific parameter paths. In sharp contrast with familiar phenomena associated with unstable orbits, hubs and infinite hub cascades always involve stable periodic and chaotic orbits which are, therefore, directly measurable in experiments. In the last part, we consider flows having no hubs but unusual phase diagrams: a cubic polynomial model containing T-points and wide regions of dense chaos, a nonpolynomial model of the Belousov-Zhabotinsky reaction and the Hindmarsh-Rose model of neuronal bursting, both having chaotic phases with ”fountains of chaos”. The chaotic regions for the flows discussed here are different from what is known for discrete-time maps. This forcefully shows that knowledge about phase diagrams is quite fragmentary and that much work is still needed to classify and to understand them.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] DOI: 10.1016/j.physleta.2008.05.036 · Zbl 1221.37233 · doi:10.1016/j.physleta.2008.05.036
[2] DOI: 10.1088/0031-8949/31/1/003 · Zbl 1063.37530 · doi:10.1088/0031-8949/31/1/003
[3] DOI: 10.1016/j.chaos.2006.06.017 · Zbl 1152.37311 · doi:10.1016/j.chaos.2006.06.017
[4] DOI: 10.1103/PhysRevE.64.025203 · doi:10.1103/PhysRevE.64.025203
[5] DOI: 10.1038/nature04275 · doi:10.1038/nature04275
[6] DOI: 10.1103/PhysRevLett.80.3049 · Zbl 1122.37308 · doi:10.1103/PhysRevLett.80.3049
[7] DOI: 10.1103/PhysRevE.75.055204 · doi:10.1103/PhysRevE.75.055204
[8] DOI: 10.1103/PhysRevLett.101.054101 · doi:10.1103/PhysRevLett.101.054101
[9] DOI: 10.1098/rsta.2007.2107 · Zbl 1153.78324 · doi:10.1098/rsta.2007.2107
[10] DOI: 10.1103/PhysRevLett.95.143905 · doi:10.1103/PhysRevLett.95.143905
[11] DOI: 10.1103/PhysRevE.77.026217 · doi:10.1103/PhysRevE.77.026217
[12] DOI: 10.1016/0167-2789(93)90288-C · Zbl 0799.58054 · doi:10.1016/0167-2789(93)90288-C
[13] Castro V., Int. J. Bifurcation and Chaos 17 pp 956–
[14] DOI: 10.1143/PTP.100.21 · doi:10.1143/PTP.100.21
[15] DOI: 10.1007/s11467-008-0017-z · doi:10.1007/s11467-008-0017-z
[16] Franceschetti D. R., Biographical Encyclopedia of Mathematicians (1999)
[17] DOI: 10.1103/PhysRevA.25.3223 · doi:10.1103/PhysRevA.25.3223
[18] DOI: 10.1063/1.2953589 · doi:10.1063/1.2953589
[19] DOI: 10.1063/1.3168400 · doi:10.1063/1.3168400
[20] DOI: 10.1103/PhysRevLett.70.2714 · doi:10.1103/PhysRevLett.70.2714
[21] DOI: 10.1016/0378-4371(94)90174-0 · doi:10.1016/0378-4371(94)90174-0
[22] DOI: 10.1007/BF01019496 · Zbl 0587.58035 · doi:10.1007/BF01019496
[23] DOI: 10.1007/BF01010829 · Zbl 0588.58055 · doi:10.1007/BF01010829
[24] DOI: 10.1007/BF01020649 · Zbl 0635.58031 · doi:10.1007/BF01020649
[25] DOI: 10.1142/S0218127405014180 · Zbl 1097.37023 · doi:10.1142/S0218127405014180
[26] DOI: 10.1038/355808a0 · doi:10.1038/355808a0
[27] DOI: 10.1098/rspb.1984.0024 · doi:10.1098/rspb.1984.0024
[28] DOI: 10.1016/S0167-2789(98)00201-2 · Zbl 0951.37010 · doi:10.1016/S0167-2789(98)00201-2
[29] Ince E. L., Ordinary Differential Equations (1926) · Zbl 0063.02971
[30] DOI: 10.1143/ptp/85.4.759 · doi:10.1143/ptp/85.4.759
[31] DOI: 10.1143/ptp/86.3.581 · doi:10.1143/ptp/86.3.581
[32] DOI: 10.1143/JPSJ.62.497 · doi:10.1143/JPSJ.62.497
[33] DOI: 10.1016/j.physd.2007.11.014 · Zbl 1155.37030 · doi:10.1016/j.physd.2007.11.014
[34] DOI: 10.1016/0035-5054(94)90026-4 · Zbl 0820.90018 · doi:10.1016/0035-5054(94)90026-4
[35] DOI: 10.1142/S0218127408021294 · doi:10.1142/S0218127408021294
[36] DOI: 10.1038/427399a · doi:10.1038/427399a
[37] DOI: 10.1016/S0375-9601(00)00726-X · Zbl 1167.82359 · doi:10.1016/S0375-9601(00)00726-X
[38] DOI: 10.1209/epl/i2000-00521-4 · doi:10.1209/epl/i2000-00521-4
[39] Ramírez-Ávila G. M., Revista Boliviana de Fisica 14 pp 1–
[40] DOI: 10.1016/0375-9601(76)90101-8 · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[41] DOI: 10.1111/j.1749-6632.1979.tb29482.x · doi:10.1111/j.1749-6632.1979.tb29482.x
[42] DOI: 10.1016/0375-9601(79)90150-6 · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[43] Segrè E., From Falling Bodies to Radio Waves, Classical Physicists and their Discoveries (2007)
[44] DOI: 10.1016/0167-2789(93)90292-9 · Zbl 0783.58052 · doi:10.1016/0167-2789(93)90292-9
[45] Shilnikov A. L., Int. J. Bifurcation and Chaos 18 pp 1123– · Zbl 1222.37033
[46] DOI: 10.1016/S0898-1221(97)00126-0 · Zbl 0889.58058 · doi:10.1016/S0898-1221(97)00126-0
[47] DOI: 10.1142/9789812798558 · doi:10.1142/9789812798558
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.